Skip to main content

Cyclic Stress: Fatigue

  • Chapter
  • First Online:
Mechanical Properties of Ceramics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 213))

Abstract

Components in engineering applications operating under cyclic loads, commonly known as fatigue, may become unstable and cause catastrophic failure to occur unexpectedly because of structural instability. It is generally thought that over 80 % of all service failures are associated with fatigue. Therefore, operation of machines or their components under cyclic loads are of prime concern. To overcome the difficulty in predicting fatigue failure—because of a large spread of statistical results—it is essential to use many test specimens to reach a meaningful average value below which the probability for fatigue fracture is quite low. Fatigue-resistance evaluation is done by plotting applied stress against the number of cycles, usually referred to as the S–N (curve) relation. In some cases a horizontal line is observed in the plot known as the “knee” representing the endurance limit. At this level of stress or below it, ceramics have the ability to endure a large number of stress-cycles without failure. A favored location of failure initiation is the surface; therefore good surface finish (often by polishing) is recommended which significantly improves fatigue resistance. Introducing compressive stress by any of the following methods, namely, laser treatments, sand blasting or shot peening improve greatly the fatigue resistance. Regardless of the origin of stress when cycling is applied, fatigue damage may result. Thus stress cycling associated with temperature changes is of great concern because it can induce fatigue damage known as thermal fatigue with premature failure in components operating at elevated temperatures. Design to overcome fatigue failure and to increase resistance to cyclic deformation is essential. Environmental effects, among them corrosion, are important in design considerations. Corrosive environments may accelerate the growth of fatigue cracks, which initiate at the surface and, therefore, reduce overall fatigue performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson TL (1991) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  2. Bartolomé JF, Moya JS, Requena J, Lorca J, Anglada M (1998) J Am Ceram Soc 81:1502

    Article  Google Scholar 

  3. Beachem CD (1968) Microscopic fracture processes. In: Liebowitz H (ed) Fracture: an advanced treatise, microscopic and macroscopic fundamentals, vol 1. Academic Press, New York

    Google Scholar 

  4. Cottrell AH (1956) Dislocations and plastic flow in crystals. Oxford University Press, London

    Google Scholar 

  5. Dauskardt RH, James MR, Porter JR, Ritchie RO (1992) J Am Ceram Soc 75:759

    Article  Google Scholar 

  6. Dauskardt RH, Marshall DB, Ritchie RO (1990) J Am Ceram Soc 73:893

    Article  Google Scholar 

  7. Felbeck DK, Atkins AG (1996) Strength and fracture of engineering solids, 2nd edn. Prentice-Hall, Cambridge

    Google Scholar 

  8. Grathwohl G, Liu T (1991) J Am Ceram Soc 74:3028

    Article  Google Scholar 

  9. Griffith AA (1924) In: Proceedings of the 1st international congress of applied mechanics (Delft), pp. 55–63

    Google Scholar 

  10. Groner DJ (1994) Thesis presented to the Faculty of the School of Engineering of the Air Force Institute of Technology, Air University. Approved for public release; distribution unlimited. Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  11. Hertzberg RW (1996) Deformation and fracture mechanics of engineering materials, 4th edn. John Wiley and Sons, New York

    Google Scholar 

  12. Kawakubo T, Komeya K (1987) J Am Ceram Soc 70:400

    Article  Google Scholar 

  13. Kitagawa H, Takahashi S (1976) In: Proceedings of the second international conference on mechanical behavior of materials. American Society for Metals, Metals Park, p. 627

    Google Scholar 

  14. Kuang C, Lin J, Socie DF (1991) J Am Ceram Soc 74:1511

    Article  Google Scholar 

  15. Lathabai S, Mai YW, Lawn BR (1989) J Am Ceram Soc 72:1761

    Article  Google Scholar 

  16. Li LS, Wang G (2008) Introduction to micromechanics and nanomechanics. World Scientific, Hackensack

    Book  MATH  Google Scholar 

  17. Liu SY, Chen IW (1991) J Am Ceram Soc 74:1197

    Article  Google Scholar 

  18. Liu SY, Chen IW (1991) J Am Ceram Soc 74:1206

    Article  Google Scholar 

  19. Liu SY, Chen IW (1992) J Am Ceram Soc 75:1191

    Article  Google Scholar 

  20. McNulty JC, Zok FW (1999) Compos Sci Technol 59:1597

    Article  Google Scholar 

  21. Meyers MA, Chawla KK (2009) Mechanical behavior of materials, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. Oki T, Yamamoto H, Osada T, Takahashi K (2013) J Powder Technol 2013:1

    Article  Google Scholar 

  23. Pfeiffer W, Frey T (2006) J Eur Ceram Soc 26:2639

    Article  Google Scholar 

  24. Rouby D, Reynaud P (1993) Compos Sci Technol 48:109

    Article  Google Scholar 

  25. Samant AN, Dahotre NB (2008) Appl Phys A 90:493

    Article  Google Scholar 

  26. Scherrer SS, Cattani-Lorente M, Vittecoq E, de Mestral F, Griggs JA, Anselm Wiskott HW (2011) Dental Mater 27:e28

    Google Scholar 

  27. Subramanian KN (1968) Phys Status Solidi 98:9

    Article  Google Scholar 

  28. Suresh S (1998) Fatigue of materials. Cambridge University Press, Cambridge

    Google Scholar 

  29. Tetelman AS (1969) Fundamental aspects of stress corrosion cracking. National Association of Corrosion Engineers, Houston, p 446

    Google Scholar 

  30. Wada H, Takimoto N, Kondo I, Murase K, Kennedy TC (2004) Estimation of dynamic fracture toughness from circumferentially notched round-bar specimens. Conference: 2004 SEM X international congress and exposition on experimental and applied mechanics

    Google Scholar 

  31. Wu S, Cheng L, Zhang J, Zhang L, Luan X, Mei H, Fang P (2006) Mater Sci Eng A 435–436:412

    Google Scholar 

  32. Yamazaki Y, S.-Ichiro Kuga, T. Ypshida (2011), Acta Metall Sin (Engl Lett) 24:109

    Google Scholar 

  33. Zener C (1948) The Macro-mechanism of Fracture, in Fracturing of Metals, American Society of Metals. Metals Park, Ohio, p 3

    Google Scholar 

  34. Zenner H, Renner F (2002) Int J Fatigue 24:1255

    Article  Google Scholar 

  35. Zhang Y, Lawn BR, Rekow ED, Van P, Thompson J (2004) Biomed Mater Res, Part B: Appl Biomater 71B:381

    Google Scholar 

  36. Zheng G, Zhao J, Jia C, Tian X, Dong Y, Zhou Y (2012) Int J Refract Metals Hard Mater 35:55

    Google Scholar 

  37. Zheng Y, Yan D, Gao L (1996) Fatigue Fract Eng Mater Struct 19:1009

    Article  Google Scholar 

  38. Zhu D, Choi SR, Miller RA (2004) Surf Coat Technol 188–189:146

    Article  Google Scholar 

  39. Zhu S, Kaneko Y, Ochi Y, Ogasawara T, Ishikawa T (2004) Int J Fatigue 26:1069

    Article  Google Scholar 

  40. Zum Gahr K-H, Bundschuh W, Zimmerlin B (1993) Wear 162–164:269

    Google Scholar 

Further References

  1. Armstrong RW (2010) Eng Fract Mech 77:1348

    Article  MathSciNet  Google Scholar 

  2. Beachem CD (1972) Metal Trans 3:437

    Article  Google Scholar 

  3. Beevers CJ, Cooke RJ, Knott JF, Ritchie RO (1975) Met Sci 9:119

    Article  Google Scholar 

  4. Birnbaum HK (1979) Hydrogen related failure mechanisms in metal. In: Foroulis ZA (ed) Environment-sensitiveve fracture of engineering materials, TMS-AIME, p. 326

    Google Scholar 

  5. Broek D (1973) Eng Fract Mech 5:55

    Article  Google Scholar 

  6. Chapetti MD (2011) Int J Fatigue 33:833

    Article  Google Scholar 

  7. Cottrell AH (1958) Theory of brittle fracture in steel and similar metals. Trans Metall Soc AIME 212:192

    Google Scholar 

  8. Cottrell AH (1963) Proceedings of the royal society of London. Ser A Math Phys Sci 276:1

    Article  Google Scholar 

  9. Cuddy JK, Bassim MN (1990) Mater Sci Eng A125:43

    Article  Google Scholar 

  10. de Luna S, Fernández-Sáez J, Párez-Castellanos JL, Navarro C (2000) Int J Press Vessels Pip 77:691

    Article  Google Scholar 

  11. Evans AG, Cannon RM (1986) Acta merall 34:761

    Google Scholar 

  12. Eftis J, Liebowitz H (1972) Int J Fract Mech 8:383

    Google Scholar 

  13. Gardner RN, Pollock TC, Wilsdorf HGF (1977) Mater Sci Eng 29:169

    Article  Google Scholar 

  14. Govila RK, Hull D (1968) Acta Metall 16:45

    Article  Google Scholar 

  15. Griffith AA (1920) Philos Trans R Soc Lond A221:163

    Google Scholar 

  16. Hayne Shumate E Jr (2009) The radius of curvature in the prime vertical. ITEA J 30:159

    Google Scholar 

  17. Inglis CE (1913) Proceedings. Inst Naval Architects 55:219

    Google Scholar 

  18. Kim W-J, Wolfenstine J, Ruano OA, Frommeyer G, Sherby O (1992) Met Trans A 23A:527

    Google Scholar 

  19. Kosmač T, Oblak Č, Jevnikar P, Funduk N, Marion L Ceramics Department, Jozef Stefan Institute. Jamova 39, SI-1000 Ljubljana, Slovenia

    Google Scholar 

  20. Laird C, Smith GC (1962) Philos Mag 7:847

    Article  Google Scholar 

  21. Levkovitch V, Sievert R, Svendsen B (2005) Int J Fract 136:207

    Article  MATH  Google Scholar 

  22. Lynch SP (1988) Acta Metall 36:2639

    Article  Google Scholar 

  23. Lynch SP (1989) Metallography 23:147

    Article  Google Scholar 

  24. Mao WG, Zhou YC, Yang L, Yu XH (2006) Mechanics of Materials 38:1118

    Google Scholar 

  25. Miller LE, Smith GC (1970) J Iron Steel Inst 208:998

    Google Scholar 

  26. Miranda P, Pajares A, Guiberteau F, Deng Y, Lawn BR (2003) Acta Materialia 51:4347

    Google Scholar 

  27. Muller C, Wagner L (1992) Mater and Manufacturing Processes 7:423

    Google Scholar 

  28. Murakami Y, Beretta S (1999) Extremes 2:123

    Article  MATH  Google Scholar 

  29. Murakami Y, Endo M (1994) Fatigue 16:163

    Article  Google Scholar 

  30. Ohtani H, McMahon CJ Jr (1976) Acta Metall 23:377

    Article  Google Scholar 

  31. Orowan E (1946) Trans Inst Eng Shipbuilders Scotland 89:165

    Google Scholar 

  32. Orowan E (1949) Rep Prog Phys 12:185

    Article  Google Scholar 

  33. Paris PC, Gomez M, Anderson WE (1961) Trend Eng 13:1219

    Google Scholar 

  34. Polakowski NH, Ripling EJ (1966) Strength and Structure of Engineering Materials, Prentice-Hall, Inc. Englewood

    Google Scholar 

  35. Pressouyre GM, Dollet J, Vieillard-Baron B (1982) Mémoires et Etudes Scientifiques de la Revue de Metallurgie 79:161

    Google Scholar 

  36. Pyttel B, Schwerdt D, Berger CH (2010) Procedia Engineering 2:1327

    Google Scholar 

  37. Qing-fen Li, Li Li, Er-bao Liu, Dong Liu, Xiu-fang Cui (2005) Scripta Materialia 53:309

    Article  Google Scholar 

  38. Quadrini E (1989) Mater Chem Phys 21:437

    Article  Google Scholar 

  39. Ritchie RO, Knott JF, Rice JR (1973) J Mech Phys Solids 21:395

    Article  Google Scholar 

  40. Sarfarazi M, Ghosh SK (1987) Eng Fract Mech 27:257

    Article  Google Scholar 

  41. Shea MM, Stoloff NS (1973) Mater Sci Eng 12:245

    Article  Google Scholar 

  42. Smith E (1968) Int J Fract Mech 4:131

    Google Scholar 

  43. Smith JF, Reynolds JH, Southworth HN (1980) Acta Metall 28:1555

    Google Scholar 

  44. Soderholm K-J (2010) Dental Materials 26:e63

    Google Scholar 

  45. Sohncke L (1869) Ann Phys Lpz. 137:177

    Article  Google Scholar 

  46. Stroh AN (1955) Proc R Soc Lond 223A:548

    Article  Google Scholar 

  47. Stroh AN (1957) Adv Phys 6:418

    Article  Google Scholar 

  48. Teirlinck D, Zok F, Embury JD, Ashby MF (1988) Acta metall 36:1213

    Article  Google Scholar 

  49. Troiano AR (1960) Trans ASM 52:54

    Google Scholar 

  50. Vosikovsky O (1979) Eng Fract Mech 11:595

    Article  Google Scholar 

  51. Zhang XJ, Armstrong RW, Irwin GR (1989) Metallurgical Trans A 20A:2862

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Pelleg .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelleg, J. (2014). Cyclic Stress: Fatigue. In: Mechanical Properties of Ceramics. Solid Mechanics and Its Applications, vol 213. Springer, Cham. https://doi.org/10.1007/978-3-319-04492-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04492-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04491-0

  • Online ISBN: 978-3-319-04492-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics