Skip to main content

Methodologies for Variable-Fidelity Optimization of Antenna Structures

  • Chapter
  • First Online:
Antenna Design by Simulation-Driven Optimization

Part of the book series: SpringerBriefs in Optimization ((BRIEFSOPTI))

  • 2073 Accesses

Abstract

In this chapter, we formulate and discuss several surrogate-based optimization techniques and algorithms that may be useful for computationally efficient antenna optimization. All methods presented here exploit variable-fidelity EM simulations. In particular, in order to optimize the high-fidelity EM model R f of the antenna structure under consideration, an auxiliary low-fidelity model R c is utilized that is normally based on coarse-discretization EM evaluation of the same structure. Under suitable correction, the low-fidelity model provides reliable predictions regarding the improved design of the high-fidelity one. The methods of setting up the low-fidelity model are elaborated in Chap. 5. A discussion of optimization techniques is preceded, in Sect. 4.1, by outlining challenges of surrogate-based antenna design. Sections 4.2–4.7 contain formulation of specific methodologies. Applications for the design optimization of various antenna structures are covered in Chaps. 6–11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov, N.M., Lewis, R.M.: An overview of first-order model management for engineering optimization. Optim. Eng. 2, 413–430 (2001)

    Article  MATH  Google Scholar 

  • Bakr, M.H., Bandler, J.W., Biernacki, R.M., Chen, S.H., Madsen, K.: A trust region aggressive space mapping algorithm for EM optimization. IEEE Trans. Microw. Theory Tech. 46, 2412–2425 (1998)

    Article  Google Scholar 

  • Bakr, M.H., Bandler, J.W., Georgieva, N.K., Madsen, K.: A hybrid aggressive space-mapping algorithm for EM optimization. IEEE Trans. Microw. Theory Tech. 47, 2440–2449 (1999)

    Article  Google Scholar 

  • Balanis, C.A.: Antenna Theory, 3rd edn. Wiley-Interscience, Hoboken, NJ (2005)

    Google Scholar 

  • Bandler, J.W., Biernacki, R.M., Chen, S.H., Swanson Jr., D.G., Ye, S.: Microstrip filter design using direct EM field simulation. IEEE Trans. Microw. Theory Tech. 42, 1353–1359 (1994)

    Article  Google Scholar 

  • Bandler, J.W., Biernacki, R.M., Chen, S.H., Hemmers, R.H., Madsen, K.: Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans. Microw. Theory Tech. 43, 2874–2882 (1995)

    Article  Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Gebre-Mariam, D.H., Madsen, K., Pedersen, F., Søndergaard, J.: EM-based surrogate modeling and design exploiting implicit, frequency and output space mappings. IEEE Int. Microw. Symp. Digest, pp. 1003–1006. Philadelphia, PA (2003)

    Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech. 52, 337–361 (2004a)

    Article  Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Nikolova, N.K., Ismail, M.A.: Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microw. Theory Tech. 52, 378–385 (2004b)

    Article  Google Scholar 

  • Beachkofski, B., Grandhi, R.: Improved distributed hypercube sampling. American Institute of Aeronautics and Astronautics. Paper AIAA 2002, p. 1274 (2002)

    Google Scholar 

  • Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, 577–593 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  • Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization (2000)

    Google Scholar 

  • CST Microwave Studio: CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2013)

    Google Scholar 

  • Echeverria, D., Hemker, P.W.: Space mapping and defect correction. CMAM Int. Math. J. Comput. Methods Appl. Math. 5, 107–136 (2005)

    MATH  MathSciNet  Google Scholar 

  • Echeverría, D.: Multi-Level optimization: space mapping and manifold mapping. Ph.D. Thesis, Faculty of Science, University of Amsterdam (2007a)

    Google Scholar 

  • Echeverría, D.: Two new variants of the manifold-mapping technique. COMPEL. Int. J. Comput. Math. Electr. Eng. 26, 334–344 (2007b)

    Article  MATH  Google Scholar 

  • Echeverría, D., Hemker, P.W.: Manifold mapping: a two-level optimization technique. Comput. Visual. Sci. 11, 193–206 (2008)

    Article  Google Scholar 

  • Hemker, P.W., Echeverría, D.: A trust-region strategy for manifold mapping optimization. JCP J. Comput. Phys. 224, 464–475 (2007)

    Article  MATH  Google Scholar 

  • Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microw. Theory Tech. 58, 2829–2837 (2010a)

    Article  Google Scholar 

  • Koziel, S.: Adaptively adjusted design specifications for efficient optimization of microwave structures. Prog. Electromag. Res. B (PIER B) 21, 219–234 (2010b)

    Google Scholar 

  • Koziel, S.: Adaptive design specifications and coarsely-discretized EM models for rapid optimization of microwave structures. Appl. Comput. Electromag. Soc. J. 26, 1007–1015 (2011)

    Google Scholar 

  • Koziel, S., Bandler, J.W.: Coarse and Surrogate Model Assessment for Engineering Design Optimization with Space Mapping, pp. 107–110. IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI (2007b)

    Google Scholar 

  • Koziel, S., Echeverría Ciaurri, D.: Reliable simulation-driven design optimization of microwave structures using manifold mapping. Prog. Electromag. Res. B 26, 361–382 (2010)

    Article  Google Scholar 

  • Koziel, S., Ogurtsov, S.: Robust Multi-fidelity Simulation-Driven Design Optimization of Microwave Structures, pp. 201–204. IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA (2010b)

    Google Scholar 

  • Koziel, S. Ogurtsov, S.: Rapid optimization of dielectric resonator antennas using surrogate models. Proc. Loughborough Antennas & Propagation Conference, LAPC 2011 (2011g)

    Google Scholar 

  • Koziel, S., Ogurtsov, S.: Bandwidth Enhanced Design of Dielectric Resonator Antennas Using Surrogate-Based Optimization. IEEE Int. Symp. Antennas Propag., Spokane, WA (2011h)

    Google Scholar 

  • Koziel, S., Ogurtsov, S.: EM-simulation-based antenna design using adaptive response correction. European Conf. Antennas & Propagation (2013a)

    Google Scholar 

  • Koziel, S., Ogurtsov, S.: Computational-budget-driven automated microwave design optimization using variable-fidelity electromagnetic simulations. Int. J. RF Microw. CAE 22, 349–356 (2013b)

    Article  Google Scholar 

  • Koziel, S., Ogurtsov, S.: Multi-level design optimization of microwave structures with automated model fidelity adjustment. IEEE Int. Microw. Symp., IMS 2013. Seattle, WA, USA (2013c)

    Google Scholar 

  • Koziel, S., Bandler, J.W., Madsen, K.: Space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microw. Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  • Koziel, S., Bandler, J.W., Madsen, K.: Quality assessment of coarse models and surrogates for space mapping optimization. Optim Eng. 9, 375–391 (2008a)

    Article  MATH  MathSciNet  Google Scholar 

  • Koziel, S., Cheng, Q.S., Bandler, J.W.: Space mapping. IEEE Microw. Mag. 9, 105–122 (2008b)

    Article  Google Scholar 

  • Koziel, S., Meng, J., Bandler, J.W., Bakr, M.H., Cheng, Q.S.: Accelerated microwave design optimization with tuning space mapping. IEEE Trans. Microw. Theory Tech. 57, 383–394 (2009a)

    Article  Google Scholar 

  • Koziel, S., Bandler, J.W., Madsen, K.: Space mapping with adaptive response correction for microwave design optimization. IEEE Trans. Microw. Theory Tech. 57, 478–486 (2009b)

    Article  Google Scholar 

  • Koziel, S., Cheng, Q.S., Bandler, J.W.: Implicit space mapping with adaptive selection of preassigned parameters. IET Microw. Antennas Propag. 4, 361–373 (2010b)

    Article  Google Scholar 

  • Petosa, A.: Dielectric Resonator Antenna Handbook. Artech House, Atlanta, GA (2007)

    Google Scholar 

  • Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  • RO4000 Series High Frequency Circuit Materials. Rogers Corporation, Publication #92-004 (2010)

    Google Scholar 

  • Volakis, J.L.: Antenna Engineering Handbook, 4th edn. McGraw-Hill, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Slawomir Koziel and Stanislav Ogurtsov

About this chapter

Cite this chapter

Koziel, S., Ogurtsov, S. (2014). Methodologies for Variable-Fidelity Optimization of Antenna Structures. In: Antenna Design by Simulation-Driven Optimization. SpringerBriefs in Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-04367-8_4

Download citation

Publish with us

Policies and ethics