Skip to main content

Microbiotas are Part of Holobiont Fitness

  • Chapter
  • First Online:
The Hologenome Concept: Human, Animal and Plant Microbiota

Abstract

The concept of fitness is central to the Darwinian theory of natural selection—the fittest survive and spread their advantageous traits through populations, but there are many definitions of biological fitness. The following qualitative definition of fitness will suffice for the purposes of this chapter: The propensity of a holobiont to survive and reproduce in a specified environment and population.

It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change.

—Charles Darwin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, G. D. & Bishop, J. E. (1967). Effect of the normal microbial flora on gastrointestinal motility. Proceedings of the Society for Experimental Biology and Medicine, 126, 301–304.

    Google Scholar 

  • Akman, L., Yamashita, A., Watanabe, H., et al. (2002). Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature Genetics, 32, 402–407.

    CAS  PubMed  Google Scholar 

  • Alexy, K. J., Gassett, J. W., Osborn, D. A., & Miller, K. V. (2003). Bacterial fauna of the tarsal tufts of white-tailed deer (Odocoileus virginianus). American Midland Naturalist, 149, 237–240.

    Google Scholar 

  • Andersson, S. G. E., Zomorodipour, A., Andesson, J. O., et al. (1998). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature, 396, 133–140.

    CAS  PubMed  Google Scholar 

  • Archie, E. A., & Theis, K. R. (2011). Animal behaviour meets microbial ecology. Animal Behaviour, 82, 425–436.

    Google Scholar 

  • Austin, C., & Ellis, J. (2003). Microbial pathways leading to steroidal malodour in the axilla. Journal of Steroid Biochemistry and Molecular Biology, 87, 105–110.

    CAS  PubMed  Google Scholar 

  • Bäckhed, F., Ding, H., Wang, T., et al. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences (USA), 101, 15718–15723.

    Google Scholar 

  • Bercik, P., Denou, E., Collins, J., et al. (2011). The intestinal microbiota affects central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141, 599–609.

    CAS  PubMed  Google Scholar 

  • Bevins, C. L., & Salzman, N. H. (2011). The potter’s wheel: The host’s role in sculpting its microbiota. Cellular and Molecular Life Sciences, 68, 3675–3685.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bidartondo, M. I. (2005). The evolutionary ecology of mycoheterotrophy. New Phytologist, 167, 335–352.

    PubMed  Google Scholar 

  • Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4, 343–350.

    CAS  PubMed  Google Scholar 

  • Bosch, T. C. G., & McFall-Ngai, M. J. (2011). Metaorganisms as the new frontier. Zoology, 114, 185–190.

    PubMed  Google Scholar 

  • Bravo, J., Forsythe, P., Marianne, V., et al. (2011). Ingestion of a Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences (USA), 108, 16050–16055.

    CAS  Google Scholar 

  • Brucker, R. M., & Bordenstein, S. R. (2012). The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities. Evolution, 66, 349–362.

    PubMed  Google Scholar 

  • Brucker, R. M., & Bordenstein, S. R. (2013). The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science. http://dx.doi.org/10.1126/science.1240659

  • Brune, A. (2011). Microbial symbioses in the digestive tract of lower termites. In: E. Rosenberg & U. Gophna (Eds.), Beneficial microorganisms in multicellular life forms. Chapter 1. Heidelberg: Springer

    Google Scholar 

  • Bullard, R. W., & Rapp, G. M. (1970). Problems of body heat loss in water immersion. Aerospace Medicine, 41, 1269–1277.

    CAS  PubMed  Google Scholar 

  • Butterton, J. R., Ryan, E. T., Shahin, R. A., et al. (1996). Development of a germ free mouse model of Vibrio cholerae infection. Infection and Immunity, 64, 4373–4377.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cani, P. D., Amar, J., Iglesias, M. A., et al. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761–1772.

    CAS  PubMed  Google Scholar 

  • Cani, P. D., Bibiloni, R., Knauf, C., et al. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes, 57, 1470–1481.

    CAS  PubMed  Google Scholar 

  • Chaix, R., Cao, C., & Donnelly, P. (2008). Is mate choice in humans MHC-dependent? PLoS Genetics, 4, e1000184.

    Google Scholar 

  • Chua, C., Spencerb, J. L., Curzia, M. J., et al. (2013). Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proceedings of the National Academy of Sciences (USA), 110, 11917–11922.

    Google Scholar 

  • Clarke, T. B., Davis, K. M., Lysenko, E. S., et al. (2010). Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Medicine, 24, 228–231.

    Google Scholar 

  • Coyne, J. A. (1992). Genetics and speciation. Nature, 355, 511–515.

    CAS  PubMed  Google Scholar 

  • Craig, A. M. (1995). Detoxification of plant and fungal toxins by ruminant microbiota. In Proceedings 8th International Symposium on Ruminant Physiology (pp 271–288).

    Google Scholar 

  • Cytryn, E., & Kolton, M. (2011). Microbial protection against plant disease. In E. Rosenberg & U. Gophna (Eds.), Beneficial microorganisms in multicellular life forms, Chap. 4. Heidelberg: Springer.

    Google Scholar 

  • Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nature Reviews Neuroscience, 13, 701–712.

    CAS  PubMed  Google Scholar 

  • Dolowy, W., & Muldoon, R. L. (1964). Studies of germfree animals: Response of mice to infection with influenza a virus. Proceedings of the Society for Experimental Biology and Medicine, 116, 365–371.

    CAS  PubMed  Google Scholar 

  • Dong, Y., Manfredini, F., & Dimopoulos, G. (2009). Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathogens, 5(5), e1000423.

    PubMed Central  PubMed  Google Scholar 

  • Dubilier, N., Bergin, C., & Lott, C. (2008). Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Reviews Microbiology, 6, 725–740.

    CAS  PubMed  Google Scholar 

  • Everard, A., Belzer, C., Geurts, L., et al. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences (USA), 110, 9066–9071.

    CAS  Google Scholar 

  • Fallowski, P. G., Dubinsky, Z., Muscatine, L., et al. (1984). Light and the bioenergetics of a symbiotic coral. BioScience, 34, 705–709.

    Google Scholar 

  • Fang, S., & Evans, R. M. (2013). Wealth management in the gut. Nature, 500, 538–539.

    CAS  PubMed  Google Scholar 

  • Fomal, S. B., Gustave, D., Sprinz, H., et al. (1961). Experimental shigella infections. V. Studies in germ-free guinea pigs. Journal of Bacteriology, 82, 284–287.

    Google Scholar 

  • Foster, J. A., & Neufeld, K. M. (2013). Gut-brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences, 36, 305–312.

    CAS  PubMed  Google Scholar 

  • Fraune, S., & Bosch, T. C. G. (2010). Why bacteria matter in animal development and evolution. BioEssays, 32, 571–580.

    CAS  PubMed  Google Scholar 

  • Gillespie, R. G., & Roderick, G. K. (2002). Arthropods on islands: colonization, speciation, and conservation. Annual Review of Entomology, 47, 595–632.

    CAS  PubMed  Google Scholar 

  • Gonzalez, A., Stombaugh, J., Lozupone, C., et al. (2011). The mind-body-microbial continuum. Dialogues in Clinical Neuroscience, 13, 55–62.

    PubMed Central  PubMed  Google Scholar 

  • Gorman, M. L. (1976). A mechanism for individual recognition by odour in Herpestes auropunctatus (Carnivora: Viverridae). Animal Behaviour, 24, 141–145.

    Google Scholar 

  • Gower, D. B., Holland, K. T., Mallet, A. I., et al. (1994). Comparison of 16-andostene steroid concentrations in sterile apocrine sweat and auxillary secretions: interconversions of 16-androstenes by auxillary microflora—a mechanism for auxillary odour production in man? Journal of Steroid Biochemistry and Molecular Biology, 48, 409–418.

    Google Scholar 

  • Guarino, A., Vecchio, A. L., & Canani, R. B. (2009). Probiotics as prevention and treatment for diarrhea. Current Opinion in Gastroenterology, 25, 18–23.

    PubMed  Google Scholar 

  • Hapfelmeier, S., Lawson, M. A. E., Slack, E., et al. (2010). Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science, 328, 1705–1709.

    CAS  PubMed  Google Scholar 

  • Hall, J. A., Bouladoux, N., Sun, C. M., et al. (2008). Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity, 29, 637–649.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heijtz, R. D., Wang, S., Anuar, F., et al. (2011). Normal gut microbiota modulates brain development and behaviour. Proceedings of the National Academy of Sciences (USA), 108, 3047–3052.

    CAS  Google Scholar 

  • Herrera, C. M., & Pozo, M. I. (2010). Nectar yeasts warm the flowers of a winter-blooming plant. Proceedings of the Royal Society B: Biological Sciences, 277, 1827–1834.

    PubMed  Google Scholar 

  • Huppert, M., & Cazin, J. (1955). Pathogenesis of Candida albicans infection following antibiotic therapy. Journal of Bacteriology, 70, 436–439.

    Google Scholar 

  • Hussa, E. A., & Goodrich-Blair, H. (2013). It takes a village: ecological and fitness impacts of multipartite mutualism. Annual Review of Microbiology, 67, 161–178.

    CAS  PubMed  Google Scholar 

  • Ibrahim, F., Halttunen, T., Tahvonen, R., et al. (2006). Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Canadian Journal of Microbiology, 52, 877–885.

    CAS  PubMed  Google Scholar 

  • Innerebner, G., Knief, C., & Vorholt, J. A. (2011). Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environment Microbiology, 77, 3202–3210.

    CAS  Google Scholar 

  • James, A. M. (1987). Thermal and energetic studies of cellular biological systems. Bristol, UK: John Wright Publishers.

    Google Scholar 

  • Javot, H., Penmetsa, R. V., Terzaghi, N., et al. (2007). A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences (USA), 104, 1720–1725.

    CAS  Google Scholar 

  • Juhr, N. C., & Ladeburg, M. (1986). Intestinal accumulation of urea in germ-free animals—a factor in caecal enlargement. Laboratory Animals, 20, 238–241.

    CAS  PubMed  Google Scholar 

  • Kang, D.-W., Park, J. G., Ilhan, Z. E., et al. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE, 8(7), e68322.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kistner, C., Winzer, T., Pitzschke, A., et al. (2005). Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell, 17, 2217–2229.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koren, O., Goodrich, J. K., Cullender, T. C., et al. (2012). Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell, 150, 470–480.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krediet, C. J., Ritchie, K. B., Alagely, A., et al. (2013). Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME Journal, 7, 980–990.

    CAS  PubMed  Google Scholar 

  • Kremersend, N., Philipp, E. E. R., Carpentier, M. C., et al. (2013). Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host and Microbe, 14, 183–194.

    Google Scholar 

  • Kuz’mina, V. V., & Pervushina, K. A. (2003). The role of proteinases of the enteral microbiota in temperature adaptation of fish and helminthes. Doklady Biological Sciences, 391, 2326–2328.

    Google Scholar 

  • Lamarcq, L. H., & McFall-Ngai, M. J. (1998). Induction of a gradual, reversible morphogenesis of its host’s epithelial brush border by Vibrio fischeri. Infection and Immunity, 66, 777–785.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landry, C., Garant, D., Duchesne, P., & Bernatchez, L. (2001). ‘Good genes as heterozygosity’: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proceedings of the Royal Society B, 268, 1279–1285.

    CAS  PubMed  Google Scholar 

  • Leatham, M. P., Banerjee, S., Autieri, S. M., et al. (2009). Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infection and Immunity, 77, 2876–2886.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le Chatelier, E., Nielsen, T., Qin, J., et al. (2013). Richness of human gut micribiome correlates with metabolic markers. Nature, 500, 541–546.

    PubMed  Google Scholar 

  • Lee, Y. K., & Mazmanian, S. K. (2010). Has the microbiota played a critical role in the evolution of the adaptive immune system? Science, 330, 1768–1773.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, Y. K., Mukasa, R., Hatton, R. D., et al. (2009). Developmental plasticity of Th17 and Treg cells. Current Opinion in Immunology, 21, 274–280.

    CAS  PubMed  Google Scholar 

  • Leung, J., Burke, B., Ford, D., et al. (2013). Possible association between obesity and Clostridium difficile infection in low-risk patients. Emerging Infectious Diseases, 19. http://dx.doi.org/10.3201/eid1911.130618

  • Lizé, A., McKay, R., & Lewis, Z. (2013). Gut microbiota and kin recognition. Trends in Ecology and Evolution, 28, 325–326.

    PubMed  Google Scholar 

  • Lombardo, M. (2008). Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behavioral Ecology and Sociobiology, 62, 479–497.

    Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting Rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    CAS  PubMed  Google Scholar 

  • Martin, W., Rujan, T., Richly, E., et al. (2002). Evolutionary analysis of arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National academy of Sciences (USA), 99, 12246–12251.

    CAS  Google Scholar 

  • McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., et al. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National academy of Sciences (USA), 110, 3229–3236.

    CAS  Google Scholar 

  • McLellan, C. A., Turbyville, T. J., Kithsiri, M., et al. (2007). A rhizosphere fungus enhances arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiology, 145, 174–182.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metchnikoff, E. (1908). The prolongation of life: optimistic studies (P. C. Mitchell, English Trans.). New York: GP Putnam’s Sons.

    Google Scholar 

  • Michalke, K., Schmidt, A., Huber, B., et al. (2008). Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice. Applied and Environment Microbiology, 74, 3069–3075.

    CAS  Google Scholar 

  • Mills, E., Shechtman, K., Loya, Y., et al. (2013). Bacteria appear to play important roles both causing and preventing the bleaching of the coral Oculina patagonica. Marine Ecology Progress Series, 489, 155–162.

    Google Scholar 

  • Morgan, J. I., & Curan, T. (1991). Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenes fos and jun. Annual Review of Neuroscience, 14, 421–451.

    Google Scholar 

  • Mizrahi, I. (2011). Role of the rumen microbiota in determining the feed efficiency of dairy cows. In E. Rosenberg & U. Gophna (Eds.), Beneficial microorganisms in multicellular life forms. Heidelberg, Ger: Springer.

    Google Scholar 

  • Monachesea, M., Burtona, J. P., & Reid, G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Applied and Environment Microbiology, 78, 6397–6404.

    Google Scholar 

  • Müller-Schwarze, D. (2006). Chemical ecology of vertebrates. Cambridge: Cambridge University Press.

    Google Scholar 

  • Natsch, A., Derrer, S., Flachsmann, F., & Schmid, J. (2006). A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chemistry and Biodiversity, 3, 1–20.

    CAS  PubMed  Google Scholar 

  • Neufeld, K. M., Kang, N., Bienenstock, J., et al. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology and Motility, 23, 255–258.

    CAS  PubMed  Google Scholar 

  • Nogge, G. (1981). Significance of symbionts for the maintenance of an optimal nutritional state for successful reproduction in hematophagous arthropods. Parasitology, 82, 101–104.

    Google Scholar 

  • Nyholm, S. V., & McFall-Ngai, M. (2004). The winnowing: Establishing the squid vibrio symbiosis. Nature Reviews Microbiology, 2, 632–642.

    CAS  PubMed  Google Scholar 

  • Ott, T., Sullivan, J., James, E. K., et al. (2009). Absence of symbiotic leghemoglobins alters bacteroid and plant cell differentiation during development of Lotus japonicus root nodules. Molecular Plant-Microbe Interactions, 22, 800–808.

    CAS  PubMed  Google Scholar 

  • Pamer, E. G. (2007). Immune responses to commensal and environmental microbes. Nature Immunology, 8, 1173–1178.

    CAS  PubMed  Google Scholar 

  • Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795–3801.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pettibone, G. W., Sullivan, S. S., & Shiaris, M. P. (1987). Comparative survival of antibiotic-resistant and -sensitive fecal indicator bacteria in estuarine water. Applied and Environmental Microbiology, 53, 1241–1245.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pluznicka, J. L., Protzkoa, R. J., Gevorgyanb, H., et al. (2013). Olfactory receptor responding to gut microbiota derived signals plays a role in renin secretion and blood pressure regulation. Proceedings of the National Academy of Sciences (USA), 110, 4410–4415.

    Google Scholar 

  • Ponsard, J., Cambon-Bonavita, M. A., Zbinden, M., et al. (2013). Inorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the vent host-shrimp Rimicaris exoculata. ISME Journal, 7, 96–109.

    CAS  PubMed  Google Scholar 

  • Provasoli, L., & Pintner, I. J. (1980). Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophyceae). Journal of Phycology, 16, 196–200.

    Google Scholar 

  • Rahat, M., & Dimentman, C. (1982). Cultivation of bacteria-free Hydra viridis: Missing budding factor in nonsymbiotic hydra. Science, 216, 67–68.

    CAS  PubMed  Google Scholar 

  • Ramirez, P. L., Barnhill, K., Gutierrez, A., et al. (2013). Improvements in behavioral symptoms following antibiotic therapy in a 14-year-old male with autism. Case Reports in Psychiatry, 239034. Published online June 19, 2013. doi:10.1155/2013/239034

  • Rawis, J. F., Samuel, B. S., & Gordon, J. L. (2004). Gnotobiotic zebrafish reveal evolutionary conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences (USA), 101, 4596–4601.

    Google Scholar 

  • Redman, R. S., Sheehan, K. B., Stout, R. G., et al. (2002). Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science, 298, 1581.

    CAS  PubMed  Google Scholar 

  • Remy, W., Taylor, T., Hass, H., et al. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences (USA), 91, 11841–11843.

    CAS  Google Scholar 

  • Ridaura, V. K., Faith, J. J., Rey, F. E., et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341, 1241214

    Google Scholar 

  • Rodriguez, R., & Redman, R. (2008). More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. Journal of Experimental Biology, 59, 1109–1114.

    CAS  Google Scholar 

  • Rumpho, M. E., Pelletreau, K. N., Moustafa, A., et al. (2011). The making of a photosynthetic animal. Journal of Experimental Biology, 214, 303–311.

    PubMed  Google Scholar 

  • Russel, J. B. (1986). Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy. Journal of Bacteriology, 168, 694–701.

    Google Scholar 

  • Satija, A., & Hu, F. B. (2012). Cardiovascular benefits of dietary fiber. Current Atherosclerosis Reports, 14, 505–514.

    CAS  PubMed  Google Scholar 

  • Savage, D. C., Siegel, J. E., Snellen, J. E., et al. (1981). Transit time of epithelial cells in the small intestines of germfree mice and ex-germfree mice associated with indigenous microorganisms. Applied and Environment Microbiology, 42, 996–1001.

    CAS  Google Scholar 

  • Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323, 737–741.

    CAS  PubMed  Google Scholar 

  • Sekirov, I., Russell, S. L., Antunes, C. M., et al. (2010). Gut microbiota in health and disease. Physiological Reviews, 90, 859–904.

    CAS  PubMed  Google Scholar 

  • Sela, D. A., Chapman, J., Adeuya, A., et al. (2008). The complete genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proceedings of the National Academy of Sciences (USA), 105, 18964–18969.

    CAS  Google Scholar 

  • Senderovich, Y., & Halpern, M. (2013). The protective role of endogenous bacterial communities in chironomid egg masses and larvae. ISME Journal, 7, 2147–2158.

    Google Scholar 

  • Shanmugam, M., Sethupathi, P., Rhee, K. J., et al. (2005). Bacterial-induced inflammation in germ-free rabbit appendix. Inflammatory Bowel Diseases, 11, 992–996.

    PubMed  Google Scholar 

  • Sharon, G., Segal, D., Ringo, J. M., et al. (2010). Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proceedings of the National Academy of Sciences (USA), 107, 20051–20056.

    CAS  Google Scholar 

  • Sharon, G., Segal, D., Zilber-Rosenberg, I., et al. (2011). Symbiotic bacteria are responsible for diet-induced mating preference in Drosophila melanogaster, providing support for the hologenome concept of evolution. Gut Microbes, 2, 190–192.

    PubMed  Google Scholar 

  • Shashar, N., Cohen, Y., Loya, Y., & Sar, N. (1994). Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral–bacteria interactions. Marine Ecology Progress Series, 111, 259–264.

    CAS  Google Scholar 

  • Shaw, W. (2010). Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid, an abnormal phenylalanine metabolite of Clostridia spp. in the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutritional Neuroscience, 13, 135–143.

    CAS  PubMed  Google Scholar 

  • Shawkey, M. D., Pillai, S. R., Hill, G. E., et al. (2007). Bacteria as an agent for change in structural plumage color: correlational and experimental evidence. American Naturalist, 169, S112–S121.

    PubMed  Google Scholar 

  • Shawkey, M. D., Pillai, S. R., & Hill, G. E. (2009). Do feather-degrading bacteria affect sexually selected plumage color? Naturwissenschaften, 96, 123–128.

    CAS  PubMed  Google Scholar 

  • Silva, A. M., Barbosa, F. H., Duarte, R., et al. (2004). Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. Journal of Applied Microbiology, 97, 29–37.

    CAS  PubMed  Google Scholar 

  • Singh, P. B., Herbert, J., Arnott, L., et al. (1990). Rearing rats in a germ-free environment eliminates their odors of individuality. Journal of Chemical Ecology, 16, 1667–1682.

    CAS  PubMed  Google Scholar 

  • Srinath, T., Verma, T., Ramteke, P. W., et al. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48, 427–435.

    CAS  PubMed  Google Scholar 

  • Stappenbeck, T. S., Hooper, L. V., & Gordon, J. I. (2002). Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proceedings of the National Academy of Sciences (USA), 99, 15451–15455.

    CAS  Google Scholar 

  • Stewart, C. S., Duncan, S. H., & Cave, D. R. (2004). Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiology Letters, 230, 1–7.

    CAS  PubMed  Google Scholar 

  • Sudo, N., Chida, Y., Aiba, Y., et al. (2004). Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. Journal of Physiology, 558, 263–275.

    CAS  PubMed  Google Scholar 

  • Swann, J., Wang, Y., Abecia, L., et al. (2009). Gut microbiome modulates the toxicity of hydrazine: a metabonomic study. Molecular BioSystems, 5, 351–355.

    CAS  PubMed  Google Scholar 

  • Tremaroli, V., & Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489, 242–249.

    CAS  PubMed  Google Scholar 

  • Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., et al. (2006). Microbial producers of plant growth stimulators and their practical use: A review. Applied Biochemistry and Microbiology, 42, 117–126.

    CAS  Google Scholar 

  • Turbyville, T. J., Wijeratne, E. M. K., Liu, M. X., et al. (2006). Search for Hsp90 inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. Journal of Natural Products, 69, 178–184.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., et al. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.

    PubMed  Google Scholar 

  • Velagapudi, V. R., Hezaveh, R., Reigstad, C. S., et al. (2010). The gut microbiota modulates host energy and lipid metabolism in mice. Journal of Lipid Research, 51, 1101–1112.

    CAS  PubMed  Google Scholar 

  • Vijay-Kumar, M., Aitken, J. O., Carvalho, F. A., et al. (2010). Metabolic syndrome and altered gut microbiota in micelacking Toll-like receptor 5. Science, 328, 228–231.

    CAS  PubMed  Google Scholar 

  • Voigt, C. C., Caspers, B., & Speck, S. (2005). Bats, bacteria, and bat smell: sex-specific diversity of microbes in a sexually selected scent organ. Journal of Mammalogy, 86, 745–749.

    Google Scholar 

  • von Bodman, S. B., Dietz Bauer, W., David, L., & Coplin, D. L. (2003). Quorum sensing in plant pathogenic bacteria. Annual Review of Phytopathology, 41, 455–482.

    Google Scholar 

  • Warnecke, F., Luginbühl, P., Ivanova, N., et al. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450, 560–565.

    CAS  PubMed  Google Scholar 

  • Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 2, 1319–1346.

    Google Scholar 

  • Weiss, B. L., Maltz, M., & Aksoy, S. (2012). Obligate symbionts activate immune system development in the tsetse fly. The Journal of Immunology, 188, 3395–3403.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wesemann, D. R., Portuguese, A. J., Meyers, R. M., et al. (2013). Microbial colonization influences early B-lineage development in the gut lamina propria. Nature,. doi:10.1038/nature12496.

    PubMed  Google Scholar 

  • Whitehead, N. A., Barnard, A. M., Slater, H., et al. (2001). Quorum-sensing in gram-negative bacteria. FEMS Microbiology Reviews, 25, 365–404.

    CAS  PubMed  Google Scholar 

  • Wikoff, W. R., Anfora, A. T., Liu, J., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences (USA), 106, 3698–3703.

    CAS  Google Scholar 

  • Wilson, A. C. C., Ashton, P. D., Calevro, F., et al. (2010). Genomic insight into the amino acid relations of the pea aphid Acyrthosiphon pisum with its symbiotic bacterium Buchnera aphidicola. Insect Molecular Biology, 19, 249–258.

    CAS  PubMed  Google Scholar 

  • Witkin, S., Mendes-Soare, H., Linhares, I. M., et al. (2013). Influence of vaginal bacteria and D- and L- lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: Implications for protection against upper genital tract. MBio., 4(4), e00460–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Rosenberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenberg, E., Zilber-Rosenberg, I. (2013). Microbiotas are Part of Holobiont Fitness. In: The Hologenome Concept: Human, Animal and Plant Microbiota. Springer, Cham. https://doi.org/10.1007/978-3-319-04241-1_5

Download citation

Publish with us

Policies and ethics