Skip to main content

Discovering Probabilistic Structures of Healthcare Processes

  • Conference paper
Process Support and Knowledge Representation in Health Care (ProHealth 2013, KR4HC 2013)

Abstract

Medical protocols and guidelines can be looked upon as concurrent programs, where the patient’s state dynamically changes over time. Methods based on verification and model-checking developed in the past have been shown to offer insight into the correctness of guidelines and protocols by adopting a logical point of view. However, there is uncertainty involved both in the management of the disease and the way the disease will develop, and, therefore, a probabilistic view on medical protocols seems more appropriate. Representations using Bayesian networks capture that uncertainty, but usually concern a single patient group and do not capture the dynamic nature of care. In this paper, we propose a new method inspired by automata learning to represent and identify patient groups for obtaining insight into the care that patients have received. We evaluate this approach using data obtained from general practitioners and identify significant differences in patients who were diagnosed with a transient ischemic attack. Finally, we discuss the implications of such a computational method for the analysis of medical protocols and guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ten Teije, A., Marcos, M., Balser, M., van Croonenborgd, J., Duellic, C., van Harmelena, F., Lucas, P., Miksch, S., Reif, W., Rosenbrand, K., Seyfang, A.: Improving medical protocols by formal methods. Artificial Intelligence in Medicine 63(3), 193–209 (2006)

    Article  Google Scholar 

  2. Hommersom, A., Groot, P., Lucas, P., Balser, M., Schmitt, J.: Verification of medical guidelines using background knowledge in task networks. IEEE Transactions on Knowledge and Data Engineering 19(6), 832–846 (2007)

    Article  Google Scholar 

  3. Bottrighi, A., Giordano, L., Molino, G., Montani, S., Terenziani, P., Torchio, M.: Adopting model checking techniques for clinical guidelines verification. Artificial Intelligence in Medicine 48(1), 1–19 (2010)

    Article  Google Scholar 

  4. Quaglini, S.: Compliance with clinical practice guidelines. In: Teije, A.T., Miksch, S., Lucas, P. (eds.) Computer-Based Medical Guidelines and Protocols: A Primer and Current Trends. Studies in Health Technology and Informatics, vol. 139, pp. 160–179. IOS Press (2008)

    Google Scholar 

  5. Field, M., Lohr, K. (eds.): Clinical Practice Guidelines: Directions for a New Program. National Academy Press, Institute of Medicine, Washington, D.C (1990)

    Google Scholar 

  6. ten Teije, A., Miksch, S., Lucas, P. (eds.): Computer-based Clinical Guidelines and Protocols: a Primer and Current Trends. IOS Press, Amsterdam (2008)

    Google Scholar 

  7. Fox, J., Das, S.: Safe and Sound: Artificial Intelligence in Hazardous Applications. AAAI Press (2000)

    Google Scholar 

  8. Peleg, M., Boxwala, A., Ogunyemi, O., Zeng, P., Tu, S., Lacson, R., Begnstam, E., Ash, N.: GLIF3: The evolution of a guideline representation format. In: Proc. AMIA Annual Symposium, pp. 645–649 (2000)

    Google Scholar 

  9. Fox, J., Johns, N., Rahmanzadeh, A., Thomson, R.: PROforma: a general technology for clinical decision support systems. Computer Methods and Programs in Biomedicine 54, 59–67 (1997)

    Article  Google Scholar 

  10. Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: A task-specific framework for the application and critiquing of time-orientied clinical guidelines. Artificial Intelligence in Medicine 14, 29–51 (1998)

    Article  Google Scholar 

  11. Tu, S., Musen, M.: From guideline modeling to guideline execution: Defining guideline based decision-support services. In: Proceedings of American Medical Informatics Association Symposium, Los Angeles, CA, pp. 863–867 (1999)

    Google Scholar 

  12. Hommersom, A., Groot, P., Lucas, P., Balser, M., Schmitt, J.: Verification of medical guidelines using background knowledge in task networks. IEEE Transactions on Knowledge and Data Engineering 19(6), 832–846 (2007)

    Article  Google Scholar 

  13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  14. Andreassen, S.: Planning of therapy and tests in causal probabilistic networks. Artificial Intelligence in Medicine 4(3), 227–241 (1992)

    Article  Google Scholar 

  15. Lucas, P., van der Gaag, L., Abu-Hanna, A.: Bayesian networks in biomedicine and health-care. Artificial Intelligence in Medicine 30, 201–214 (2004)

    Article  Google Scholar 

  16. Dagum, P., Galper, A., Horvitz, E.: Dynamic network models for forecasting. In: Proceedings of UAI 1992, pp. 41–48 (1992)

    Google Scholar 

  17. Neapolitan, R.: Learning Bayesian Networks. Pearson (2004)

    Google Scholar 

  18. Robinson, R.: Counting unlabeled acyclic graphs. In: LNM, vol. 622, pp. 220–227. Springer, NY (1977)

    Google Scholar 

  19. Gillespie, S.B., Perlman, M.D.: Enumerating Markov Equivalence Classes of Acyclic Digraph Models. In: UAI 2001 (2001)

    Google Scholar 

  20. Ghahramani, Z.: Learning dynamic bayesian networks. In: Giles, C.L., Gori, M. (eds.) IIASS-EMFCSC-School 1997. LNCS (LNAI), vol. 1387, pp. 168–197. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data. ACM Trans. Softw. Eng. Methodol. 7, 215–249 (1998)

    Article  Google Scholar 

  22. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines - a survey. Proceedings of the IEEE 84, 1090–1123 (1996)

    Article  Google Scholar 

  23. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of behavior protocols for composable web-services. In: Proceedings of the Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp. 141–150. ACM (2009)

    Google Scholar 

  24. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S.: Reverse engineering state machines by interactive grammar inference. In: Proceedings of the 14th Working Conference on Reverse Engineering, pp. 209–218. IEEE (2007)

    Google Scholar 

  26. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, New York (2010)

    Google Scholar 

  27. Sudkamp, T.A.: Languages and Machines: an introduction to the theory of computer science, 3rd edn. Addison-Wesley (2006)

    Google Scholar 

  28. Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and hidden Markov models: probability distributions, learning models and induction algorithms. Pattern Recognition 38, 1349–1371 (2005)

    Article  MATH  Google Scholar 

  29. Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy construction. In: IJCAI. AAAI (1995)

    Google Scholar 

  30. Geiger, D., Heckerman, D.: Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence 82, 45–74 (1996)

    Article  MathSciNet  Google Scholar 

  31. Visscher, S., Lucas, P.J.F., Flesch, I., Schurink, K.: Using temporal context-specific independence information in the exploratory analysis of disease processes. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 87–96. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Gutierrez, J., Ramirez, G., Rundek, T., Sacco, R.L.: Statin therapy in the prevention of recurrent cardiovascular events: a sex-based meta-analysis. Arch. Intern. Med. 172(12), 909–919 (2012)

    Article  Google Scholar 

  33. Duivesteijn, W., Knobbe, A., Feelders, A., van Leeuwen, M.: Subgroup discovery meets bayesian networks – an exceptional model mining approach. In: Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM 2010, pp. 158–167. IEEE Computer Society, Washington, DC (2010)

    Chapter  Google Scholar 

  34. Bohada, J.A., Riaño, D., LĂ³pez-VallverdĂº, J.A.: Automatic generation of clinical algorithms within the state-decision-action model. Expert Systems with Applications 39(12), 10709–10721 (2012)

    Google Scholar 

  35. LĂ³pez-VallverdĂº, J.A., Riaño, D., Bohada, J.A.: Improving medical decision trees by combining relevant health-care criteria. Expert Systems with Applications 39(14), 11782–11791 (2012)

    Google Scholar 

  36. Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  37. Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B., Moleman, A.J.: Process mining in healthcare data challenges when answering frequently posed questions. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) ProHealth 2012 and KR4HC 2012. LNCS, vol. 7738, pp. 140–153. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  38. Kaymak, U., Mans, R., van de Steeg, T., Dierks, M.: On process mining in health care. In: SMC, pp. 1859–1864 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hommersom, A., Verwer, S., Lucas, P.J.F. (2013). Discovering Probabilistic Structures of Healthcare Processes. In: Riaño, D., Lenz, R., Miksch, S., Peleg, M., Reichert, M., ten Teije, A. (eds) Process Support and Knowledge Representation in Health Care. ProHealth KR4HC 2013 2013. Lecture Notes in Computer Science(), vol 8268. Springer, Cham. https://doi.org/10.1007/978-3-319-03916-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03916-9_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03915-2

  • Online ISBN: 978-3-319-03916-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics