Skip to main content

Solitary Quantum Dot Laser

  • Chapter
  • First Online:
Dynamics of Quantum Dot Lasers

Part of the book series: Springer Theses ((Springer Theses))

  • 1145 Accesses

Abstract

In this chapter, the model for the solitary semiconductor QD laser is introduced and its turn-on dynamics is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For this model, \(\rho _{\mathrm{inv }}\) is not a very useful coordinate to simplify the calculation of the steady states, because there is no simple expression for the spontaneous emission terms \(-\rho _e\rho _h\) in the QD Eqs. (3.12c) and (3.12d) in terms of \(\rho _{\mathrm{inv }}\). However, introducing \(\rho _{\mathrm{inv }}\) permits to directly compare the modeling results with most of the literature on three variable models (\(R\), \(\Psi \), \(\rho _{\mathrm{inv }}\)) of QW lasers under optical injection, where the rescaled inversion is usually denoted by \(N\) or \(Z\). For recent reviews of the literature see for example [48] and [49].

  2. 2.

    In the following, the Landau symbol \(\mathcal {O}\) is frequently used to describe the scaling of a quantity, e.g., ‘\(\gamma F_b\) is of order one’ may be written as \(\gamma F_b=\mathcal {O}(1)\) [52].

  3. 3.

    Note that often in the literature (cf. [48, 49, 56, 57]) a rescaled field amplitude \(R\equiv \sqrt{r^{\mathrm{QW }}}{\mathcal {E}}\) is introduced, such that the rescaled intensity \(I\equiv R^2\) is of \(\mathcal {O}(1)\). However, to compare the findings of this section with those derived for the QD model in the next sections, \({\mathcal {E}}^2=N_{\mathrm{ph }}\) is used.

  4. 4.

    Typically, \(N_{\mathrm{ph }}=\mathcal {O}(10^{4})\), which implies that the product of \(r_wN_{\mathrm{ph }}^{0}\) is a \(\mathcal {O}(1)\).

  5. 5.

    Note that \(\Gamma _{\mathrm{RO }}^{\mathrm{vf }}\) and \(\omega ^{\mathrm{vf }}_{\mathrm{RO }}\) are given by \(\Gamma _{\mathrm{RO }}^{\mathrm{vf }}=2\kappa \gamma \Gamma ^{\mathrm{vf }}_1\) and \(\omega ^{\mathrm{vf }}_{\mathrm{RO }}=2\kappa \sqrt{\gamma }\omega ^{\mathrm{vf }}_{1/2}\), respectively.

References

  1. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999)

    Google Scholar 

  2. E.U. Rafailov, M.A. Cataluna, E.A. Avrutin, Ultrafast Lasers Based on Quantum Dot Structures (Wiley-vch, Weinheim, 2011). ISBN: 978-3-527-40928-0

    Book  Google Scholar 

  3. M. Kuntz, N.N. Ledentsov, D. Bimberg, A.R. Kovsh, V.M. Ustinov, A.E. Zhukov, YuM Shernyakov, Spectrotemporal response of 1.3 \(\upmu \)m quantumdot lasers. Appl. Phys. Lett. 81(20), 3846–3848 (2002)

    Article  ADS  Google Scholar 

  4. T. Erneux, E.A. Viktorov, P. Mandel, Time scales and relaxation dynamics in quantum-dot lasers. Phys. Rev. A 76, 023819 (2007). doi:10.1103/physreva.76.023819

    Article  ADS  Google Scholar 

  5. K. Lüdge, E. Schöll, Quantum-dot lasers—desynchronized nonlinear dynamics of electrons and holes. IEEE J. Quantum Electron 45(11), 1396–1403 (2009)

    Article  Google Scholar 

  6. T. Erneux, E.A. Viktorov, B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, Optically injected quantum-dot lasers. Opt. Lett. 35(7), 070937 (2010)

    Article  ADS  Google Scholar 

  7. B. Kelleher, D. Goulding, S.P. Hegarty, G. Huyet, E.A. Viktorov, T. Erneux, Chapter 1: Optically injected single-mode quantum dot lasers, in Lecture Notes in Nanoscale Science and Technology, ed. by Z.M. Wang (Springer, New York, 2011)

    Google Scholar 

  8. E. Malić, K.J. Ahn, M.J.P. Bormann, P. Hövel, E. Schöll, A. Knorr, M. Kuntz, D. Bimberg, Theory of relaxation oscillations in semiconductor quantum dot lasers. Appl. Phys. Lett. 89, 101107 (2006). doi:10.1063/1.2346224

    Article  ADS  Google Scholar 

  9. E. Malić, M.J.P. Bormann, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, E. Schöll, Coulomb damped relaxation oscillations in semiconductor quantum dot lasers. IEEE J. Sel. Top. Quantum Electron 13(5), 1242–1248 (2007). doi:10.119/jqstqe.2007.905148

    Article  Google Scholar 

  10. K. Lüdge, M.J.P. Bormann, E. Malić, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, E. Schöll, Turn-on dynamics and modulation response in semiconductor quantum dot lasers. Phys. Rev. B 78(3), 035316 (2008). doi:10.1103/physrevb.78.035316

    Article  ADS  Google Scholar 

  11. K. Lüdge, E. Schöll, Nonlinear dynamics of doped semiconductor quantum dot lasers. Eur. Phys. J. D 58(1), 167–174 (2010)

    Article  Google Scholar 

  12. K. Lüdge, Chapter 1: Nonlinear laser dynamics: From quantum dots to cryptography, in Modeling Quantum Dot based Laser Devices, ed. by K. Lüdge (Wiley-vch, Weinheim, 2012), pp. 3–34. ISBN: 9783527411009

    Google Scholar 

  13. K. Lüdge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijevic, D. Bimberg, E. Schöll, Large signal response of semiconductor quantum-dot lasers. IEEE J. Quantum Electron 46(12), 1755–1762 (2010). doi:10.1109/jqe.2066959.44

    Article  ADS  Google Scholar 

  14. W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999). ISBN: 978-3-540-64166-7

    Book  MATH  Google Scholar 

  15. Y. Su, A. Carmele, M. Richter, K. Lüdge, E. Schöll, D. Bimberg, A. Knorr, Theory of single quantum dot lasers: Pauli-blocking enhanced anti-bunching. Semicond. Sci. Technol. 26, 014015 (2011)

    Article  ADS  Google Scholar 

  16. C. Gies, J. Wiersig, M. Lorke, F. Jahnke, Semiconductor model for quantumdot- based microcavity lasers. Phys. Rev. A 75(1), 013803 (2007)

    Article  ADS  Google Scholar 

  17. D. Goulding, S.P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J.G. McInerney, D. Rachinskii, G. Huyet, Excitability in a Quantum Dot Semiconductor Laser with Optical Injection. Phys. Rev. Lett. 98(15), 153903 (2007)

    Article  ADS  Google Scholar 

  18. D. O’Brien, S.P. Hegarty, G. Huyet, A.V. Uskov, Sensitivity of quantumdot semiconductor lasers to optical feedback. Opt. Lett. 29(10), 1072–1074 (2004)

    Article  ADS  Google Scholar 

  19. G. Huyet, D. O’Brien, S.P. Hegarty, J.G. McInerney, A.V. Uskov, D. Bimberg, C. Ribbat, V.M. Ustinov, A.E. Zhukov, S.S. Mikhrin, A.R. Kovsh, J.K. White, K. Hinzer, A.J. SpringThorpe, Quantum dot semiconductor lasers with optical feedback. Phys. Stat. Sol. B 201(2), 345–352 (2004). doi:10.1002/pssa.200303971

    Article  Google Scholar 

  20. W.W. Chow, S.W. Koch, Theory of semiconductor quantum-dot laser dynamics. IEEE J. Quantum Electron 41, 495–505 (2005). doi:10.1109/jqe.2005.843948

    Article  ADS  Google Scholar 

  21. B. Lingnau, K. Lüdge, E. Schöll, W.W. Chow, Many-body and nonequilibrium effects on relaxation oscillations in a quantum-dot microcavity laser. Appl. Phys. Lett. 97(11), 111102 (2010). doi:10.1063/1.3488004

    Article  ADS  Google Scholar 

  22. B. Lingnau, K. Lüdge, E. Schöll, W.W. Chow, Dynamic many-body and nonequilibrium effects in a quantum dot microcavity laser, in Semiconductor Lasers and Laser Dynamics IV, ed. by K. Panajotov, M. Sciamanna, A.A. Valle, R. Michalzik. Proceedings of SPIE 49, Vol. 7720 (SPIE, Bellingham, 2010) pp.121–150. doi:10.1117/12.854671

  23. B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering. Appl. Phys. Lett. 101(13), 131107 (2012)

    Article  ADS  Google Scholar 

  24. B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Many-body effects and self-contained phase dynamics in an optically injected quantum-dot laser, in Semiconductor Lasers and Laser Dynamics V, Brussels, ed. by K. Panajotov, M. Sciamanna, A.A. Valle, R. Michalzik. Proceedings of SPIE 53, Vol. 8432 (SPIE, Bellingham, 2012), pp. 84321J–1. ISBN: 9780819491244

    Google Scholar 

  25. B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Many-body effects and selfcontained phase dynamics in an optically injected quantum-dot laser, Proceedings of SPIE, Vol. 8432 (2012)

    Google Scholar 

  26. J. Gomis-Bresco, S. Dommers, V.V. Temnov, U. Woggon, J. Martinez-Pastor, M. Lämmlin, D. Bimberg, InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers. IEEE J. Quantum Electron 45(9), 1121–1128 (2009)

    Article  ADS  Google Scholar 

  27. M. Wegert, N. Majer, K. Lüdge, S. Dommers-Völkel, J. Gomis-Bresco, A. Knorr, U. Woggon, E. Schöll, Nonlinear gain dynamics of quantum dot optical amplifiers. Semicond. Sci. Technol. 26, 014008 (2011). doi:10.1088/0268–1242/26/1/014008

    Google Scholar 

  28. N. Majer, K. Lüdge, E. Schöll, Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers. Phys. Rev. B 82, 235301 (2010)

    Article  ADS  Google Scholar 

  29. N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 99, 131102 (2011). doi:10.1063/1.3643048

    Article  ADS  Google Scholar 

  30. N. Majer, K. Lüdge, E. Schöll, Maxwell–Bloch approach to four-wave mixing in quantum dot semiconductor optical amplifiers, in IEEE Proceeding of 11th International Conference on Numerical Simulation of Optical Devices (NUSOD), ed. by J. Piprek, (Rome, 2011) pp. 153–154. doi:10.1109/nusod.2011.6041190

  31. S. Wilkinson, B. Lingnau, J. Korn, E. Schöll, K. Lüdge, Influence of noise on the signal properties of quantum-dot semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron 19(4), 1900106 (2013). doi:10.1109/jstqe.2012.2233464

    Article  Google Scholar 

  32. J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics. New J. Phys. 14, 053018 (2012)

    Article  ADS  Google Scholar 

  33. B. Globisch, C. Otto, E. Schöll, K. Lüdge, Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. Phys. Rev. E 86, 046201 (2012)

    Article  ADS  Google Scholar 

  34. R. Wetzler, A. Wacker, E. Schöll, Non-local Auger effect in quantum dot devices. Semicond. Sci. Technol. 19, S43 (2004)

    Article  ADS  Google Scholar 

  35. R. Wetzler, A. Wacker, E. Schöll, Coulomb scattering with remote continuum states in quantum dot devices. J. Appl. Phys. 95, 7966 (2004)

    Article  ADS  Google Scholar 

  36. M. Kuntz, Modulated InGaAs/GaAs quantum dot lasers, PhD thesis, Technische Universität Berlin, Berlin, 2006

    Google Scholar 

  37. M. Lorke, T.R. Nielsen, J. Seebeck, P. Gartner, F. Jahnke, Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems. Phys. Rev. B 73, 085324 (2006). doi:10.1103/physrevb.73.085324

    Article  ADS  Google Scholar 

  38. R. Wetzler, A. Wacker, E. Schöll, C.M.A. Kapteyn, R. Heitz, D. Bimberg, Capacitance-voltage characteristics of InAs/GaAs quantum dots embedded in a pn structure. Appl. Phys. Lett. 77, 1671 (2000)

    Article  ADS  Google Scholar 

  39. A. Rack, R. Wetzler, A. Wacker, E. Schöll, Dynamical bistability in quantumdot structures: Role of auger processes. Phys. Rev. B 66, 165429 (2002)

    Article  ADS  Google Scholar 

  40. T.R. Nielsen, P. Gartner, F. Jahnke, Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69, 235314 (2004)

    Article  ADS  Google Scholar 

  41. H.H. Nilsson, J.Z. Zhang, I. Galbraith, Homogeneous broadening in quantum dots due to Auger scattering with wetting layer carriers. Phys. Rev. B 72(20), 205331 (2005). doi:10.1103/physrevb.72.205331

    Article  ADS  Google Scholar 

  42. K. Lüdge, E. Schöll, E.A. Viktorov, T. Erneux, Analytic approach to modulation properties of quantum dot lasers. J. Appl. Phys. 109(9), 103112 (2011). doi:10.1063/1.3587244

    Article  ADS  Google Scholar 

  43. K. Lüdge E. Schöll, Temperature dependent two-state lasing in quantum dot lasers, in, Laser Dynamics and Nonlinear Photonics, Proceeding IEEE Conference Fifth Rio De La Plata Workshop, 6–9 December 2011, (IEEE Publishing Services, New York, 2012), pp. 1–6. doi:10.1109/ldnp.2011.6162081

  44. E. Schöll, Nonequilibrium Phase Transitions in Semiconductors (Springer, Berlin, 1987)

    Book  Google Scholar 

  45. H. Haken, Laser Theory (Springer, New York, 1983)

    Book  Google Scholar 

  46. S.H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Cambridge, 1994)

    Google Scholar 

  47. V. Flunkert, Delay-Coupled Complex Systems (Springer, Heidelberg, 2011). ISBN: 978-3-642-20249-0

    Book  MATH  Google Scholar 

  48. T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  49. S. Wieczorek, B. Krauskopf, T.B. Simpson, D. Lenstra, The dynamical complexity of optically injected semiconductor lasers. Phys. Rep. 416(1–2), 1–128 (2005)

    ADS  Google Scholar 

  50. J.R. Tredicce, F.T. Arecchi, G.L. Lippi, G.P. Puccioni, Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B 2(1), 173–183 (1985). doi:10.1364/josab.2.000173

    Article  ADS  Google Scholar 

  51. T. Erneux, Applied Delay Differential Equations (Springer, New York, 2009)

    MATH  Google Scholar 

  52. C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Vol. 1. (Springer, New York, 2010)

    Google Scholar 

  53. K. Lüdge, B. Lingnau, C. Otto, E. Schöll, Understanding electrical and optical modulation properties of semiconductor quantum-dot lasers in terms of their turn-on dynamics. Nonlinear Phenom. Complex Syst. 15(4), 350–359 (2012). ISSN: 1561–4085 (Print), 1817–2458 (On)

    Google Scholar 

  54. J. Mørk, B. Tromborg, J. Mark, Chaos in semiconductor lasers with optical feedback-theory and experiment. IEEE J. Quantum Electron 28, 93–108 (1992)

    Article  ADS  Google Scholar 

  55. C. Otto, K. Lüdge, E.A. Viktorov, T. Erneux, Chapter 6: Quantum dot laser tolerance to optical feedback, in Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, ed. by K. Lüdge (Wiley-vch, Weinheim, 2012), pp. 141–162. ISBN: 9783527411009

    Google Scholar 

  56. G.H.M. van Tartwijk, D. Lenstra, Semiconductor laser with optical injection and feedback. Quantum Semiclass. Opt. 7, 87–143 (1995)

    ADS  Google Scholar 

  57. G.H.M. van Tartwijk, G.P. Agrawal, Laser instabilities: a modern perspective. Prog. Quantum Electronics 22(2), 43–122 (1998). doi:10.1016/s0079-6727(98)00008-1

  58. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Boston, 1991)

    Google Scholar 

  59. L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley and Sons, New York, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Otto .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Otto, C. (2014). Solitary Quantum Dot Laser. In: Dynamics of Quantum Dot Lasers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-03786-8_2

Download citation

Publish with us

Policies and ethics