Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 153))

Abstract

In my talk, I will discuss black hole thermodynamics, particularly what happens when you add thermodynamic curvature to the mix. Although black hole thermodynamics is a little off the main theme of this workshop, I hope nevertheless that my message will be of some interest to researchers in supersymmetry and supergravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The calculation of \(R\) for the ideal Bose gas was done with a continuous density of states, and so a possible divergence of \(R\) at a Bose-Einstein phase transition with \(T>0\) would not have been revealed.

  2. 2.

    If a paper starts with a spacetime metric, and calculates the thermodynamic from the area of the event horizon, it is a general relativistic solution. If the paper starts with a Lagrangian, and a quantum action then it is beyond the scope of my talk.

  3. 3.

    The line element (10.2) transforms as a scalar, since probability is a scalar quantity. Hence, the metric elements \(g_{\alpha \beta }\) transform as the elements of a second-rank tensor, which the relation between (10.20) and (10.21) satisfies. The resulting thermodynamic curvature \(R\) transforms as a scalar. These transformation properties hold under all coordinate transformations, including those resulting from Legendre transformations. This is the case in both ordinary and black hole thermodynamics, despite erroneous claims to the contrary [64].

References

  1. F. Weinhold, Thermodynamics and geometry. Phys. Today 29(3), 23 (1976)

    Article  Google Scholar 

  2. G. Ruppeiner, Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20, 1608 (1979)

    Article  ADS  Google Scholar 

  3. B. Andresen, P. Salamon, R.S. Berry, Thermodynamics in finite time. Phys. Today 37(9), 62 (1984)

    Article  Google Scholar 

  4. G. Ruppeiner, Thermodynamic curvature: pure fluids to black holes. J. Phys.: Conf. Series 410, 012138 (2013)

    ADS  Google Scholar 

  5. L. Landau, E. Lifshitz, Statistical Physics (Pergamon, New York, 1977)

    Google Scholar 

  6. R.K. Pathria, Statistical Mechanics (Butterworth-Heinemann, Oxford, 1996)

    MATH  Google Scholar 

  7. A. Einstein, On the general molecular theory of heat. Ann. Phys. (Leipzig) 14, 354 (1904)

    Article  ADS  MATH  Google Scholar 

  8. A. Einstein, The theory of the opalescence of homogeneous fluids and liquid mixtures near the critical state. Ann. Phys. (Leipzig) 33, 1275 (1910)

    Article  ADS  MATH  Google Scholar 

  9. G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 68, 313(E) (1996)

    Google Scholar 

  11. D. Laugwitz, Differential and Riemannian Geometry (Academic, New York, 1965)

    MATH  Google Scholar 

  12. G. Ruppeiner, Thermodynamic curvature measures interactions. Am. J. Phys. 78, 1170 (2010)

    Article  ADS  Google Scholar 

  13. D.A. Johnston, W. Janke, R. Kenna, Information geometry, one, two, three (and four). Acta Phys. Pol. B 34, 4923 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  14. G. Ruppeiner, New thermodynamic fluctuation theory using path integrals. Phys. Rev. A 27, 1116 (1983)

    Article  ADS  Google Scholar 

  15. G. Ruppeiner, Thermodynamic critical fluctuation theory? Phys. Rev. Lett. 50, 287 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. L. Diósi, B. Lukács, Covariant evolution equation for the thermodynamic fluctuations. Phys. Rev. A 31, 3415 (1985)

    Article  ADS  Google Scholar 

  17. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

    Google Scholar 

  18. H. Janyszek, R. Mrugała, Riemannian geometry and stability of ideal quantum gases. J. Phys. A: Math. Gen. 23, 467 (1990)

    Article  ADS  Google Scholar 

  19. H. Oshima, T. Obata, H. Hara, Riemann scalar curvature of ideal quantum gases obeying Gentile’s statistics. J. Phys. A 32, 6373 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. B. Mirza, H. Mohammadzadeh, Thermodynamic geometry of deformed bosons and fermions. J. Phys. A: Math. Gen. 44, 475003 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. D. Brody, N. Rivier, Geometrical aspects of statistical mechanics. Phys. Rev. E 51, 1006 (1995)

    Article  ADS  Google Scholar 

  22. H. Janyszek, R. Mrugała, Riemannian geometry and the thermodynamics of model magnetic systems. Phys. Rev. A 39, 6515 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. D.C. Brody, D.W. Hook, Information geometry in vapour–liquid equilibrium. J. Phys. A: Math. Theor. 42, 023001 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. W. Janke, D.A. Johnston, R. Kenna, Information geometry of the spherical model. Phys. Rev. E 67, 046106 (2003)

    Article  ADS  Google Scholar 

  25. G. Ruppeiner, J. Chance, Thermodynamic curvature of a one-dimensional fluid. J. Chem. Phys. 92, 3700 (1990)

    Article  ADS  Google Scholar 

  26. J. Nulton, P. Salamon, Geometry of the ideal gas. Phys. Rev. A 31, 2520 (1985)

    Article  ADS  Google Scholar 

  27. G. Ruppeiner, C. Davis, Thermodynamic curvature of the multicomponent ideal gas. Phys. Rev. A 41, 2200 (1990)

    Article  ADS  Google Scholar 

  28. K. Kaviani, A. Dalafi-Rezaie, Pauli paramagnetic gas in the framework of Riemannian geometry. Phys. Rev. E 60, 3520 (1999)

    Article  ADS  Google Scholar 

  29. G. Ruppeiner, Thermodynamic curvature and phase transitions in Kerr-Newman black holes. Phys. Rev. D 78, 024016 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. M.R. Ubriaco, Stability and anyonic behavior of systems with M-statistics. Physica A 392, 4868 (2013). arXiv:1302.4719 [hep-th]

  31. B. Mirza, H. Mohammadzadeh, Nonperturbative thermodynamic geometry of anyon gas. Phys. Rev. E 80, 011132 (2009)

    Article  ADS  Google Scholar 

  32. G. Ruppeiner, Thermodynamic curvature from the critical point to the triple point. Phys. Rev. E 86, 021130 (2012)

    Article  ADS  Google Scholar 

  33. G. Ruppeiner, A. Sahay, T. Sarkar, G. Sengupta, Thermodynamic geometry, phase transitions, and the Widom line. Phys. Rev. E 86, 052103 (2012). arXiv:1106.2270 [hep-th]

  34. H.-O. May, P. Mausbach, Riemannian geometry study of vapor–liquid phase equilibria and supercritical behavior of the Lennard–Jones fluid. Phys. Rev. E 85, 031201 (2012)

    Article  ADS  Google Scholar 

  35. H.-O. May, P. Mausbach, G. Ruppeiner, Thermodynamic curvature for attractive and repulsive intermolecular forces. Phys. Rev. E. 88, 032123 (2013)

    Google Scholar 

  36. E. Johansson, K. Bolton, P. Ahlström, Simulations of vapor water clusters at vapor–liquid equilibrium. J. Chem. Phys. 123, 024504 (2005)

    Article  ADS  Google Scholar 

  37. NIST Chemistry WebBook, available at the Web Site http://webbook.nist.gov/chemistry/

  38. W. Wagner, A. Pruss, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387 (2002)

    Article  ADS  Google Scholar 

  39. B. Mirza, Z. Talaei, Thermodynamic geometry of a kagome Ising model in a magnetic field. Phys. Lett. A 377, 513 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  40. G. Ruppeiner, Application of Riemannian geometry to the thermodynamics of a simple fluctuating magnetic system. Phys. Rev. A 24, 488 (1981)

    Article  ADS  Google Scholar 

  41. B.P. Dolan, Geometry and thermodynamic fluctuations of the Ising model on a Bethe lattice. Proc. R. Soc. London A 454, 2655 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. W. Janke, D.A. Johnston, R.P.K.C. Malmini, Information geometry of the Ising model on planar random graphs. Phys. Rev. E 66, 056119 (2002)

    Article  ADS  Google Scholar 

  43. B.P. Dolan, D.A. Johnston, R. Kenna, The information geometry of the one-dimensional Potts model. J. Phys. A: Math. Gen. 35, 9025 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. D.C. Brody, A. Ritz, Information geometry of finite Ising models. J. Geom. Phys. 47, 207 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. To be submitted.

    Google Scholar 

  46. J.D. Bekenstein, Black-hole thermodynamics. Phys. Today 33(1), 24 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  47. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  48. G.N. Lewis, Generalized thermodynamics including the theory of fluctuations. J. Am. Chem. Soc. 53, 2578 (1931)

    Article  Google Scholar 

  49. G. Ruppeiner, Stability and fluctuations in black hole thermodynamics. Phys. Rev. D 75, 024037 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  50. P. Davies, The thermodynamic theory of black holes. Proc. R. Soc. London A 353, 499 (1977)

    Article  ADS  Google Scholar 

  51. P.T. Landsberg, D. Tranah, Thermodynamics of non-extensive entropies. Collect. Phenom. 3, 73 (1980)

    MathSciNet  Google Scholar 

  52. D. Tranah, P.T. Landsberg, Thermodynamics of non-extensive entropies. Collect. Phenom. 3, 81 (1980)

    MathSciNet  Google Scholar 

  53. A. Strominger, C. Vafa, Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379, 99 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  54. S. Bellucci, B.N. Tiwari, State-space correlations and stabilities. Phys. Rev. D 82, 084008 (2010)

    Article  ADS  Google Scholar 

  55. S. Bellucci, B.N. Tiwari, Thermodynamic geometry and topological Einstein-Yang-Mills black holes. Entropy 14, 1045 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  56. S.-W. Wei, Y.-X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss–Bonnet AdS black holes. Phys. Rev. D 87, 044014 (2013)

    Article  ADS  Google Scholar 

  57. J. Bekenstein, Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  58. S. Hawking, Black holes and thermodynamics. Phys. Rev. D 13, 191 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  59. L. Smarr, Mass formula for Kerr black holes. Phys. Rev. Lett. 30, 71 (1973)

    Article  ADS  Google Scholar 

  60. J. Ã…man, I. Bengtsson, N. Pidokrajt, Geometry of black hole thermodynamics. Gen. Relativ. Gravit. 35, 1733 (2003)

    Article  ADS  MATH  Google Scholar 

  61. D. Pavón, J.M. Rubí, Thermodynamical fluctuations of a massive Schwarzschild black hole. Phys. Lett. 99A, 214 (1983)

    Article  ADS  Google Scholar 

  62. D. Pavón, J.M. Rubí, Kerr black hole thermodynamical fluctuations. Gen. Relativ. Gravit. 17, 387 (1985)

    Article  ADS  Google Scholar 

  63. P. Salamon, J.D. Nulton, E. Ihrig, On the relation between entropy and energy versions of thermodynamic length. J. Chem. Phys. 80, 436 (1984)

    Article  ADS  Google Scholar 

  64. H. Quevedo, Geometrothermodynamics of black holes. Gen. Relativ. Gravit. 40, 971 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. S. Ferrara, G. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nuc. Phys. B 500, 75 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  66. R.G. Cai, J.H. Cho, Thermodynamic curvature of the BTZ black hole. Phys. Rev. D 60, 067502 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  67. K.S. Thorne, R.H. Price, D.A. Macdonald, Black Holes: The Membrane Paradigm (Yale University Press, New Haven, 1986)

    Google Scholar 

  68. J.E. Ã…man, N. Pidokrajt, Geometry of higher-dimensional black hole thermodynamics. Phys. Rev. D 73, 024017 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  69. B. Mirza, M. Zamaninasab, Ruppeiner geometry of RN black holes: flat or curved? JHEP 1006, 059 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  70. G. Arcioni, E. Lozano-Tellechea, Stability and critical phenomena of black holes and black rings. Phys. Rev. D 72, 104021 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  71. J. Shen, R.-G. Cai, B. Wang, R.-K. Su, Thermodynamic geometry and critical behavior of black holes. Int. J. Mod. Phys. A 22, 11 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  72. A. Sahay, T. Sarkar, G. Sengupta, On the thermodynamic geometry and critical phenomena of AdS black holes. JHEP 1007, 82 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  73. C. Niu, Y. Tian, X.-N. Wu, Critical phenomena and thermodynamic geometry of Reissner-Nordström-anti-de Sitter black holes. Phys. Rev. D 85, 024017 (2012)

    Article  ADS  Google Scholar 

  74. R. Banerjee, S.K. Modak, S. Samanta, Second order phase transition and thermodynamic geometry in Kerr-AdS black holes. Phys. Rev. D 84, 064024 (2011)

    Article  ADS  Google Scholar 

  75. Y.-D. Tsai, X.-N. Wu, Y. Yang, Phase structure of the Kerr-AdS black hole. Phys. Rev. D 85, 044005 (2012)

    Article  ADS  Google Scholar 

  76. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  77. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Holography, thermodynamics, and fluctuations of charged AdS black holes. Phys. Rev. D 60, 104026 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  78. R. Banerjee, S. Ghosh, D. Roychowdhury: New type of phase transition in Reissner-Nordstr\(\ddot{\text{ o }}\)m-AdS black hole and its thermodynamic geometry. Phys. Lett. B 696, 156 (2011)

    Google Scholar 

  79. R. Banerjee, S. Modak, D. Roychowdhury, A unified picture of phase transition: from liquid–vapour systems to AdS black holes. JHEP 1210, 125 (2012)

    Article  ADS  Google Scholar 

  80. A. Medved, A commentary on Ruppeiner metrics for black holes. Mod. Phys. Lett. A 23, 2149 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I thank George Skestos for travel support, and I thank the conference organizer Stefano Bellucci of INFN for giving me the opportunity to present my work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Ruppeiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ruppeiner, G. (2014). Thermodynamic Curvature and Black Holes. In: Bellucci, S. (eds) Breaking of Supersymmetry and Ultraviolet Divergences in Extended Supergravity. Springer Proceedings in Physics, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-319-03774-5_10

Download citation

Publish with us

Policies and ethics