Skip to main content

Update on Perioperative Hemodynamic Monitoring and Goal-directed Optimization Concepts

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2014

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2014))

  • 2159 Accesses

Abstract

The prescription of perioperative fluids has been a persistent controversy among anesthesiologists, surgeons and intensivists. Interestingly, disagreements within each specialty as to the appropriative types and amounts of fluids required are just as intense as those seen among specialties. The challenge of navigating these waters is demanding because the safe harbor of optimal fluid administration is bounded by hypovolemia and end-organ hypoperfusion, resulting from inadequate fluid resuscitation, and the negative effects of edema formation on respiration and wound healing, resulting from excessive fluid administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marik PE, Cavallazzi R (2013) Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 41:1774–1781

    Article  PubMed  Google Scholar 

  2. Perel A, Habicher M, Sander M (2013) Bench-to-bedside review: Functional hemodynamics during surgery – should it be used for all high-risk cases? Crit Care 17:203

    Article  PubMed  Google Scholar 

  3. Kastrup M, Carl M, Spies C et al (2013) Clinical impact of the publication of S3 guidelines for intensive care in cardiac surgery patients in Germany: results from a postal survey. Acta Anaesthesiol Scand 57:206–213

    Article  CAS  PubMed  Google Scholar 

  4. Tuman KJ, McCarthy RJ, Spiess BD et al (1989) Effect of pulmonary artery catheterization on outcome in patients undergoing coronary artery surgery. Anesthesiology 70:199–206

    Article  CAS  PubMed  Google Scholar 

  5. Pölönen P, Ruokonen E, Hippeläinen M et al (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90:1052–1059

    Article  PubMed  Google Scholar 

  6. Sandham JD, Hull RD, Brant RF et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    Article  PubMed  Google Scholar 

  7. Jules-Elysee KM, YaDeau JT, Urban MK (2009) Pulmonary artery versus central venous catheter monitoring in the outcome of patients undergoing bilateral total knee replacement. HSS J 5:27–30

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112:1392–1402

    Article  PubMed  Google Scholar 

  9. Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 14:78–83

    Article  CAS  PubMed  Google Scholar 

  10. Goedje O, Seebauer T, Peyerl M et al (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118:775–781

    Article  CAS  PubMed  Google Scholar 

  11. Button D, Weibel L, Reuthebuch O et al (2007) Clinical evaluation of the FloTrac/Vigileo system and two established continuous cardiac output monitoring devices in patients undergoing cardiac surgery. Br J Anaesth 99:329–336

    Article  CAS  PubMed  Google Scholar 

  12. Sander M, von Heymann C, Foer A et al (2005) Pulse contour analysis after normothermic cardiopulmonary bypass in cardiac surgery patients. Crit Care 9:R729–R734

    Article  PubMed  Google Scholar 

  13. Sander M, Spies CD, Grubitzsch H et al (2006) Comparison of uncalibrated arterial waveform analysis in cardiac surgery patients with thermodilution cardiac output measurements. Crit Care 10:R164

    Article  PubMed  Google Scholar 

  14. Østergaard M, Nielsen J, Nygaard E (2009) Pulse contour cardiac output: an evaluation of the FloTrac method. Eur J Anaesthesiol 26:484–489

    Article  PubMed  Google Scholar 

  15. Hofer CK, Senn A, Weibel L, Zollinger A (2008) Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system. Crit Care 12:R82

    Article  PubMed  Google Scholar 

  16. Woltjer HH, Bogaard HJ, de Vries PM (1997) The technique of impedance cardiography. Eur Heart J 18:1396–1403

    Article  CAS  PubMed  Google Scholar 

  17. Perrino AC, Lippman A, Ariyan C et al (1994) Intraoperative cardiac output monitoring: comparison of impedance cardiography and thermodilution. J Cardiothorac Vasc Anesth 8:24–29

    Article  PubMed  Google Scholar 

  18. Bogert LWJ, Wesseling KH, Schraa O et al (2010) Pulse contour cardiac output derived from non-invasive arterial pressure in cardiovascular disease. Anaesthesia 65:1119–1125

    Article  CAS  PubMed  Google Scholar 

  19. Hofhuizen CM, Lemson J, Hemelaar AEA et al (2010) Continuous non-invasive finger arterial pressure monitoring reflects intra-arterial pressure changes in children undergoing cardiac surgery. Br J Anaesth 105:493–500

    Article  CAS  PubMed  Google Scholar 

  20. Maggi R, Viscardi V, Furukawa T, Brignole M (2010) Non-invasive continuous blood pressure monitoring of tachycardic episodes during interventional electrophysiology. Europace 12:1616–1622

    Article  PubMed  Google Scholar 

  21. Broch O, Renner J, Gruenewald M et al (2012) A comparison of the Nexfin® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia 67:377–383

    Article  CAS  PubMed  Google Scholar 

  22. Fischer M-O, Coucoravas J, Truong J et al (2013) Assessment of changes in cardiac index and fluid responsiveness: a comparison of Nexfin and transpulmonary thermodilution. Acta Anaesthesiol Scand 57:704–712

    Article  PubMed  Google Scholar 

  23. Monnet X, Picard F, Lidzborski E et al (2012) The estimation of cardiac output by the Nexfin device is of poor reliability for tracking the effects of a fluid challenge. Crit Care 16:R212

    Article  PubMed  Google Scholar 

  24. Sander M, Spies CD, Foer A et al (2007) Agreement of central venous saturation and mixed venous saturation in cardiac surgery patients. Intensive Care Med 33:1719–1725

    Article  PubMed  Google Scholar 

  25. Pennekamp CWA, Bots ML, Kappelle LJ et al (2009) The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg 38:539–545

    Article  CAS  PubMed  Google Scholar 

  26. Taillefer M-C, Denault AY (2005) Cerebral near-infrared spectroscopy in adult heart surgery: systematic review of its clinical efficacy. Can J Anaesth 52:79–87

    Article  PubMed  Google Scholar 

  27. Auler JO, Galas F, Hajjar L et al (2008) Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. Anesth Analg 106:1201–1206

    Article  PubMed  Google Scholar 

  28. Gan TJ, Soppitt A, Maroof M et al (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97:820–826

    Article  PubMed  Google Scholar 

  29. Sander M, Spies CD, Berger K et al (2007) Prediction of volume response under open-chest conditions during coronary artery bypass surgery. Crit Care 11:R121

    Article  PubMed  Google Scholar 

  30. Hood JA, Wilson RJT (2011) Pleth variability index to predict fluid responsiveness in colorectal surgery. Anesth Analg 113:1058–1063

    Article  PubMed  Google Scholar 

  31. Wyffels PAH, Durnez P-J, Helderweirt J et al (2007) Ventilation-induced plethysmographic variations predict fluid responsiveness in ventilated postoperative cardiac surgery patients. Anesth Analg 105:448–452

    Article  PubMed  Google Scholar 

  32. Monnet X, Guérin L, Jozwiak M et al (2013) Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth 110:207–213

    Article  CAS  PubMed  Google Scholar 

  33. Walsh SR, Tang T, Bass S, Gaunt ME (2008) Doppler-guided intra-operative fluid management during major abdominal surgery: systematic review and meta-analysis. Int J Clin Pract 62:466–470

    Article  CAS  PubMed  Google Scholar 

  34. Roeck M, Jakob SM, Boehlen T et al (2003) Change in stroke volume in response to fluid challenge: assessment using esophageal Doppler. Intensive Care Med 29:1729–1735

    Article  PubMed  Google Scholar 

  35. Lefrant JY, Bruelle P, Aya AG et al (1998) Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients. Intensive Care Med 24:347–352

    Article  CAS  PubMed  Google Scholar 

  36. Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355

    CAS  PubMed  Google Scholar 

  37. Buhre W, Buhre K, Kazmaier S et al (2001) Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography. Eur J Anaesthesiol 18:662–667

    Article  CAS  PubMed  Google Scholar 

  38. Wiesenack C, Fiegl C, Keyser A et al (2005) Continuously assessed right ventricular end-diastolic volume as a marker of cardiac preload and fluid responsiveness in mechanically ventilated cardiac surgical patients. Crit Care 9:R226–R233

    Article  PubMed  Google Scholar 

  39. Vieillard-Baron A, Chergui K, Rabiller A et al (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739

    PubMed  Google Scholar 

  40. Shoemaker WC, Appel PL, Kram HB et al (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  CAS  PubMed  Google Scholar 

  41. Gurgel ST, do Nascimento P (2011) Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg 112:1384–1391

    Article  PubMed  Google Scholar 

  42. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692

    Article  PubMed  Google Scholar 

  43. Rhodes A, Cecconi M, Hamilton M et al (2010) Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med 36:1327–1332

    Article  PubMed  Google Scholar 

  44. Grocott MPW, Dushianthan A, Hamilton MA et al (2013) Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth 111:535–548

    Article  CAS  PubMed  Google Scholar 

  45. Aya HD, Cecconi M, Hamilton M, Rhodes A (2013) Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. Br J Anaesth 110:510–517

    Article  CAS  PubMed  Google Scholar 

  46. Dalfino L, Giglio MT, Puntillo F et al (2011) Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care 15:R154

    Article  PubMed  Google Scholar 

  47. Giglio MT, Marucci M, Testini M, Brienza N (2009) Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth 103:637–646

    Article  CAS  PubMed  Google Scholar 

  48. Pearse R, Dawson D, Fawcett J et al (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–R693

    Article  PubMed  Google Scholar 

  49. Brandstrup B, Tønnesen H, Beier-Holgersen R et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238:641–648

    Article  PubMed  Google Scholar 

  50. Fouche Y, Sikorski R, Dutton RP (2010) Changing paradigms in surgical resuscitation. Crit Care Med 38:S411–S420

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mezger, V., Habicher, M., Sander, M. (2014). Update on Perioperative Hemodynamic Monitoring and Goal-directed Optimization Concepts. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2014. Annual Update in Intensive Care and Emergency Medicine, vol 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-03746-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03746-2_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03745-5

  • Online ISBN: 978-3-319-03746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics