Skip to main content

Control of Grid Connected Converter (GCC) Under Grid Voltage Disturbances

  • Chapter
  • First Online:
Advanced and Intelligent Control in Power Electronics and Drives

Part of the book series: Studies in Computational Intelligence ((SCI,volume 531))

Abstract

In this chapter operation of a reliable control method of a Grid Connected Converter (GCC) under grid voltage disturbances is presented. As a GCC authors understand power electronic AC-DC converter with AC side filter and DC-link capacitor operating as an interface between the electrical grid and Active Loads (AL). At the beginning short introduction to selected grid voltage disturbances is given. Afterwards, the chosen modeling approach of a GCC is discussed and the example of passive components calculation are provided. In the next sections a brief review of a basic GCC control methods is described. A control method: Direct Power Control with Space Vector Modulation (DPC-SVM) is chosen for further development process. For the basic scheme of DPC-SVM special control modules for voltage dips and higher harmonics compensation are presented. Due to the development of new control modules and its integration with the classical DPC-SVM a new reliable (robust to selected grid voltage disturbances such as dips, higher harmonics) control method is proposed: Robust Direct Power Control with Space Vector Modulation (RDPC-SVM). The term “robust” in the name of proposed control refers to the fact that the RDPC-SVM method is expected to operate in an uncertain environment with respect to the system dynamics. This new control method can assure sinusoidal like and balanced AC current in extremely distorted grid voltage. Based on the case study from series 5–400 kVA of Voltage Source Converters (VSCs) it was verified that the control dynamic and features of the RDPC-SVM fulfill requirements of sinusoidal and balanced currents under uncertain grid voltage distortions. Moreover, the quality of current and power is significantly improved in comparison to classical methods. Hence, the negative impact of the GCC on the grid voltage (through its inner impendence) is significantly reduced i.e.: lower Total Harmonics Distortion (THD) factor of a grid current, control of active and reactive power flow assure good quality of integration with a grid even in case of increased impedance within operation limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Koczara, Compensation in demand for drive power, in Proceedings of the PEMC 1990 Conference, pp. 354–358

    Google Scholar 

  2. M.H.J. Bollen, in Understanding Power Quality Problems—Voltage Sags and Interruptions. The Institute of Electrical and Electronics Engineers INC (IEEE), Nowy Jork, NY, 10016-5997, John Wiley & Sons Inc (2000)

    Google Scholar 

  3. IEEE recommended practice for monitoring electric Power quality, IEEE, Std. 1159-1995, Nowy Jork (1995)

    Google Scholar 

  4. IEEE Std 519-1992, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, The Institute of Electrical and Electronics Engineers, Inc., USA (1993)

    Google Scholar 

  5. EN 50160, Voltage characteristics of electricity supplied by public electricity networks

    Google Scholar 

  6. IEC 61000-2-2 Electromagnetic Compatibility (EMC), Part 2: Environment, Section 2: Compatibility levels for low-frequency conduced disturbances and signaling In public low-voltage Power supply systems

    Google Scholar 

  7. IEC 61000-2-4, Electromagnetic compatibility (EMC)—Part 2-4: Environment—Compatibility levels in industrial plants for low-frequency conducted disturbances

    Google Scholar 

  8. IEC 61000-3-2 Electromagnetic compatibility (EMC)—Part 3-2: Limits—Limits for harmonic current emissions (equipment input current ≤16 A per phase)

    Google Scholar 

  9. IEC 61000-3-3, Electromagnetic compatibility (EMC)—Part 3-3: Limits—Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤16 A per phase and not subject to conditional connection

    Google Scholar 

  10. IEC 61000-4-7 „Electromagnetic compatibility (EMC)—Part 4-7: Testing and measurement techniques—General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto

    Google Scholar 

  11. IEC 61000-4-11, Electromagnetic compatibility (EMC)—Part 4-11: Testing and measurement techniques—Voltage dips, short interruptions and voltage variations immunity tests

    Google Scholar 

  12. IEC 61000-4-14, Electromagnetic compatibility (EMC)—Part 4-14: Testing and measurement techniques—Voltage fluctuation immunity test for equipment with input current not exceeding 16 A per phase

    Google Scholar 

  13. IEC 61000-4-15, Electromagnetic compatibility (EMC)—Part 4-15: Testing and measurement techniques—Flickermeter—Functional and design specifications

    Google Scholar 

  14. SEMI F47-0706 Specification for Semiconductor Processing Equipment Voltage Sag Immunity

    Google Scholar 

  15. PSE Operator S.A., IRiESP—operational instruction in power distribution systems (in Polish)

    Google Scholar 

  16. J.A. Oliver, R. Lawrence, B.B. Banerjee, How to specify power-quality-tolerant process equipment, in IEEE Industrial Applications Magazine, September/October 2002, pp. 21–30

    Google Scholar 

  17. Planing levels for harmonic voltages, Engineering Recommendation G5/4-1

    Google Scholar 

  18. V. Ajodhia, B. Franken, in Regulation of Voltage Quality (Kema Consulting, Bonn, 2007)

    Google Scholar 

  19. R. Strzelecki, G. Benysek, in Power Electronics in Smart Electrical Energy Networks (Springer, Berlin, 2008), p. 414

    Google Scholar 

  20. M. Jasinski, M.P. Kazmierkowski, H.Ch. Soerensen, E. Friis-Madsen, Direct power and torque control of AC/DC/AC converter-generator subset in wave-to-wire power train for renewable energy system-wave dragon MW. WSEAS Trans. Power Syst. 1(10), 1681–1688, October 2006, ISSN1790-5060

    Google Scholar 

  21. J.W. Kolar, H. Ertl, K. Edelmoser, F.C. Zach, Analysis of the control behavior of a bidirectional three-phase PWM rectifier system, in Proceedings of the EPE 1991 Conference, 1991, pp. (2-095)–(2-100)

    Google Scholar 

  22. J.A. Oliver, R. Lawrence, B.B. Banerjee, How to specify power-quality-tolerant process equipment, IEEE Industrial Applications Magazine, September/October 2002, pp. 21–30

    Google Scholar 

  23. N. Mohan, T.M. Undeland, W.P. Robbins, in Power Electronics: Converters, Applications, and Design (Wiley, New York, 1989), p. 667

    Google Scholar 

  24. F. Abrahamsen, A. David, Adjustable speed drive with active filtering capability for harmonic current compensation, in Proceedings of the PESC 1995 Conference, pp. 1137–1143

    Google Scholar 

  25. H. Akagi, New trends in active filters for power conditioning. IEEE Trans. Ind. Appl. 32, 1312–1332 (1996)

    Article  Google Scholar 

  26. M. Cichowlas, PWM Rectifier with Active Filtering, Warsaw University of Technology, Ph.D. Thesis, Warsaw, Poland, 2004

    Google Scholar 

  27. D. Zhou, D. Rouaud, Regulation and design issues of a PWM three-phase rectifier, in Proceedings of the 25th Annual Conference on IECON’99, vol. 1, pp. 485–489 (1999)

    Google Scholar 

  28. S. Piasecki, M. Jasinski, A. Milicua, Brief view on control of grid-interfacing AC-DC-AC converter and active filter under unbalanced and distorted voltage conditions, Int. J. Comput. Math. Electr. Electron. Eng. (COMPEL) on EVER’09, Emerald 30(1), 351–373 (2011)

    Google Scholar 

  29. V. Blasko, V. Kaura, A new mathematical model and control of a tree-phase AC-DC voltage source converter. IEEE Trans. Power Electron. 12(1), 116–123 (1997)

    Article  Google Scholar 

  30. R.P. Burgos, E.P. Wiechmann, J. Holtz, Complex state variables modeling and nonlinear control of PWM voltage- and current-source rectifiers, in 28th Annual Conference on IECON 02, Industrial Electronics Society, IEEE 2002, Vol. 1, 5–8 Nov. 2002, pp. 187–192

    Google Scholar 

  31. G.F. Franklin, J. David Powell, A. Emami-Naeini, in Feedback Control of Dynamic Systems, 3rd edn (Addison-Wesley, Reading, 1994)

    Google Scholar 

  32. M. Malinowski, M. Jasinski, M.P. Kazmierkowski, Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM). IEEE Trans. Ind. Electron. 51(2), 447–454 (2004)

    Article  Google Scholar 

  33. Spagnuolo, G., Petrone, G., Araujo, S.V., Cecati, C., Friis-Madsen, E., Gubia, E., Hissel, D., Jasinski, M., Knapp, W., Liserre, M., Rodriguez, P., Teodorescu, R., Zacharias, P., Renewable energy operation and conversion schemes: a summary of discussions during the seminar on renewable energy systems. IEEE Ind. Electron. Mag. 4(1), 38–51 (2010)

    Google Scholar 

  34. G. Joos, N.R. Zargari, P.D. Ziogas, A new class of current-controlled suppressed-link ac to ac frequency changers, in Proceedings of Power Electronics Specialists Conference, 22nd Annual IEEE, 24–27 June 1991, pp. 830–837

    Google Scholar 

  35. M.P. Kazmierkowski, L. Malesani, Current control techniques for three-phase voltage-source PWM converters: a survey. IEEE Trans. Ind. Electron 45(5), 691–703 (1998)

    Article  Google Scholar 

  36. B.-K. Lee, M. Ehsani, A simplified functional simulation model for three-phase voltage-source inverter using switching function concept. IEEE Trans. Ind. Electron. 48(2), 209–321 (2001)

    Google Scholar 

  37. H. Mao, D. Boroyevich, F.C.Y. Lee, Novel reduced-order small-signal model of a three-phase PWM rectifier and its application in control design and system analysis. IEEE Trans. Power Electron. 13(3), 511–521 (1998)

    Article  Google Scholar 

  38. E.P. Weichmann, P.D. Ziogas, V.R. Stefanovic, Generalized functional model for three-phase PWM inverter/rectifier converters, IEEE Trans. Ind. Appl. IA-23(2), 236–246, (1987)

    Google Scholar 

  39. R. Wu, S.B. Dewan, G.L. Slemon, Analysis of a PWM AC to DC voltage source converter under the predicted current control with fixed switching frequency. IEEE Trans. Ind. Appl. 27(4), 756–764 (1991)

    Article  Google Scholar 

  40. R. Wu, S.B. Dewan, G.R. Slemon, A PWM AC-to-DC converter with fixed switching frequency, IEEE Trans. Ind, Appl. 26(5), 880–885, (1990)

    Google Scholar 

  41. R. Wu, S.B. Dewan, G.R. Slemon, Analysis of an ac-to-dc voltage source converter using PWM with phase and amplitude control. IEEE Trans. Ind. Appl. 27(2), 355–364 (1991)

    Google Scholar 

  42. K. Xing, F.C. Lee, J.S. Lai, Y. Gurjit, D. Borojevic, Adjustable speed drive neutral voltage shift and grounding issues in a DC distributed system, in Proceedings of the Annual Meeting of the IEEE-IAS, 1997, pp. 517–524

    Google Scholar 

  43. Y. Xue, X. Xu, T.G. Habatler, D.M. Divan, A low cost stator flux oriented voltage source variable speed drive, in Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE, 7–12 Oct. 1990, pp. 410–415

    Google Scholar 

  44. N.R. Zargari, G. Joós, Performance investigation of a current-controlled voltage-regulated PWM rectifier in rotating and stationary frames. IEEE Trans. Ind. Electron. 42(4), 396–401 (1995)

    Article  Google Scholar 

  45. M. Malinowski, Sensorless Control Strategies for Three-Phase PWM Rectifiers, Warsaw University of Technology, Ph.D. Thesis, Warszawa, 2001

    Google Scholar 

  46. M. Liserre, Innovative control techniques of power converters for industrial automation, Politecnico di Bari, Ph.D. Thesis, Italy, 2001

    Google Scholar 

  47. P. Rodriguez, R. Teodorescu, I. Candela, A.V. Timbus, M. Liserre, F. Blaabjerg, New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions, in Power Electronics Specialists Conference, 2006. PESC ‘06. 37th IEEE, pp. 1–7, 18–22 June 2006

    Google Scholar 

  48. M. Jasinski, Direct power and torque control of AC-DC-AC converter-fed induction motor drives, Ph.D. Thesis, Warsaw University of Technology, Warsaw, Poland, 2005

    Google Scholar 

  49. M.P. Kazmierkowski, H. Tunia, Automatic Control of Converter-Fed Drives (Elsevier, Amsterdam, 1994), p. 559

    Google Scholar 

  50. K. Mikołajuk, Principles of Power Electronics Circuits, Wydawnictwo Naukowe PWN, 1998, p. 525, (in Polish)

    Google Scholar 

  51. S. Piasecki, M. Jasinski, G. Wrona, W. Chmielak, Robust Control of Grid Connected AC-DC Converter for Distributed Generation, in IECON 2012, Montreal, Canada, pp. 5844–5849

    Google Scholar 

  52. G. Wrona, M. Jasinski, Asymmetrical Higher harmonics compensation in grid connected AC-DC converter control, in 13th International Symposium Typical Problems in the Field of Electrical and Power Engineering, Doctoral School of Energy and Geotechnology II, Parnu, Estonia 14-19.01.2013, pp. 126–131. ISBN978-9985-69-054-3

    Google Scholar 

  53. A. Sikorski, Problems related with switching loses minimization in PWM AC/DC/AC fed induction machine, Politechnika Białostocka, Rozprawy Naukowe nr. 58, Białystok 1998, p. 217 (in Polish)

    Google Scholar 

  54. A. Sikorski, Current control conditions control for AC/DC, Nonsinusoidal Currents, EPN’ 2000, Zielona Gora, 2000 (in Polish)

    Google Scholar 

  55. K. Jalili, Investigation of Control Concepts for High-Speed Induction Machine Drives and Grid Side Pulse-Width Modulation Voltage Source Converters, PhD Thesis, Technischen Universität Dresden, p. 174, 2009

    Google Scholar 

  56. M. Liserre, F. Blaabjerg, A. Dell’Aquila, Step-by-step design procedure for a grid-connected three-phase PWM voltage source converter. Int. J. Electron. 91(8), 445–460 (2004)

    Google Scholar 

  57. M. Liserre, A. Dell’Aquila, F. Blaabjerg, Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier. IEEE Trans. Power Electron. 19(1), 76–86 (2004)

    Article  Google Scholar 

  58. M. Liserre, A. Dell’Aquila, F. Blaabjerg, Stability improvements of an LCL-filter based three-phase active rectifier, IEEE, 2002, pp. 1195–1201

    Google Scholar 

  59. K.A. Rothenhagen, M. Jasinski, M.P. Kazmierkowski, Grid connection of multi-megawatt clean wave energy power plant under weak grid condition, in EPE-PEMC’08, 1–3 September 2008, Poznan, Poland, on CD

    Google Scholar 

  60. EPCOS, Aluminium Electrolic Capacitors-Genera Technical Information, DataSheet, www.epcos.com

  61. EPCOS, Aluminium Electrolic Capacitors-Applications, DataSheet, www.epcos.com

  62. D.G. Holmes, T.A. Lipo, Pulse Width Modulation for Power Converters, Principles and Practice (Wiley-Interscience and IEEE Press, New York, 2003)

    Book  Google Scholar 

  63. M. Alakula, J.E. Persson, Vector controlled ac/ac converters with a minimum of energy storage, in Proceedings of the IEEE Conference, 1994, pp. 1130–1134

    Google Scholar 

  64. M.M. Bech, F. Blaabjerg, J.-K. Pedersen, Random modulation techniques with fixed switching frequency for three-phase power converters. IEEE Trans. Power Electron. 15(4), 753–761 (2000)

    Article  Google Scholar 

  65. V. Blasko, Analysis of a hybrid PWM based on modified space-vector and triangle-comparison methods, IEEE Trans. Ind. Appl. 33(3), 756–764 (1997)

    Google Scholar 

  66. A. Boglietti, G. Griva, M. Pasterelli, F. Profumo, T. Adam, Different PWM modulation techniques indexes performance evaluation, in Proceedings of the IEEE Conference, 1993, pp.193–199

    Google Scholar 

  67. A.M. Hava, S.-K. Sul, R.J. Kerkman, Dynamic overmodulation characteristics of triangle intersection PWM methods. IEEE Trans. Ind. Appl. 35(4), 896–907 (1999)

    Article  Google Scholar 

  68. A.M. Hava, R.J. Karkman, T.A. Lipo, A high-performance generalized discontinuous PWM algorithm. IEEE Trans. Ind. Appl. 34(5), 059–1071 (1998)

    Article  Google Scholar 

  69. J.W. Kolar, H. Ertl, F.C. Zach, Influence of the modulation method on the conduction and switching losses of a PWM converter system. IEEE Trans. Ind. Appl. 27(6), 1063–1075 (1991)

    Article  Google Scholar 

  70. D.-C. Lee, G.-M. Lee, A novel overmodulation technique for space-vector PWM inverters. IEEE Trans. Power Electron. 13(6), 1144–1151 (1998)

    Article  Google Scholar 

  71. H.W. Van Der Broeck, H.C. Skudelny, Analysis and realization of a pulsewidth modulator based on voltage space vectors. IEEE Trans. Ind. Appl. 24(1), 142–150 (1988)

    Article  Google Scholar 

  72. M. Winkelnkemper, S. Bernet, Design and optimalization of the DC-link capacitor of PWM voltage source inverter with active frontend for low-voltage drives, in Proceedings of the EPE 2003 Conference, 2003

    Google Scholar 

  73. A. Carlsson, The back-to-back converter control and design, Lund Institute of Technology, Ph.D. Thesis, Lund, 1998

    Google Scholar 

  74. L. Moran, P.D. Ziogas, G. Joos, Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions. IEEE Trans. Ind. Appl. 28(6), 1286–1293 (1992)

    Article  Google Scholar 

  75. B.K. Bose, Modern Power Electronics and AC Drives (Prentice-Hall, Upper Saddle River, 2002)

    Google Scholar 

  76. B.T. Ooi, J.W. Dixon, A.B. Kulkarni, M. Nishimoto, An integrated AC drive system using a controlled-current PWM Rectifier/Inverter link. IEEE Trans. Power Electron. 3(1), 64–71 (1988)

    Article  Google Scholar 

  77. P. Cortes, J. Rodriguez, P. Antoniewicz, M. Kazmierkowski, Direct power control of an AFE using predictive control. IEEE Trans. Power Electron. 23(5), 2516–2523 (2008)

    Article  Google Scholar 

  78. J.C.R. Martinez, R. Kennel, A.L. Sheakh Ameen, Comparative analysis of on-line and off-line explicit solutions, applied in predictive direct current, in 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), April 2010, pp.1,6, 19–21

    Google Scholar 

  79. M. Liserre, C. Klumpner, F. Blaabjerg, V.G. Monopoli, A. Dell’Aquila, Evaluation of the ride-through capability of an active-front-end adjustable speed drive under real grid conditions, in Proceedings of the Annual Conference of the IEEE-IES, 2004

    Google Scholar 

  80. M. Liserre, F. Blaabjerg, S. Hansen, Design and control of an LCL-filter based three-phase active rectifier. IEEE Trans. Ind. Appl. 41(5), 1281–1291 (2005)

    Article  Google Scholar 

  81. J.A. Suul, A. Luna, P. Rodriguez, T. Undeland, Voltage-sensor-less synchronization to unbalanced grids by frequency-adaptive virtual flux estimation. IEEE Trans. Ind. Electron. 59(7), 2910–2923 (2012)

    Article  Google Scholar 

  82. N. Zaveri, A. Mehta, A. Chudasama, Performance analysis of various SRF methods in three phase shunt active filters, in 2009 International Conference. on Industrial and Information Systems (ICIIS), pp. 442–447, 28–31 Dec. 2009

    Google Scholar 

  83. R. Teodorescu, F. Blaabjerg, M. Liserre, P.C. Loh, Proportional resonant controllers and filters for grid-connected voltage-source converters. IEE Proc. Eletr. Power Appl. 153(5), 750–762 (2006)

    Article  Google Scholar 

  84. H. Song, K. Nam, Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Trans. Energy Conv. 46(5), October 1999

    Google Scholar 

  85. R. Teodorescu, M. Liserre, P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems (Wiley-IEEE, New York, 2011), p. 416

    Google Scholar 

  86. M.P. Kaźmierkowski, M. Jasiński, Power electronic grid-interface for renewable ocean wave energy, in International Conference-Workshop Compatibility and Power Electronics, 1–3 June 2011-CPE 2011, Tallinn, Estonia, pp. 457–463

    Google Scholar 

  87. M. Jasinski, K. Rafal, M. Bobrowska-Rafal, S. Piasecki, Grid interfacing of distributed energy sources by three-level BtB NPC converter under distorted grid voltage, in 2011 Workshop on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), pp. 30–35, 14–15 Oct. 2011

    Google Scholar 

  88. G.D. Marques, J.F. Silva, Direct voltage control of a PWM AC/DC voltage converter, in Proceedings of the EPE 1997 Conference, 1997, pp. (3.222)–(3.227)

    Google Scholar 

  89. H. Hur, J. Jung, K. Nam, A fast dynamics DC-link power-balancing scheme for a PWM converter-inverter system. IEEE Trans. Ind. Electron. 48(4), 794–803 (2001)

    Article  Google Scholar 

  90. J. Jung, S. Lim, K. Nam, A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor. IEEE Trans. Ind. Appl. 35(5), 1124–1131 (1999)

    Article  Google Scholar 

  91. F. Kamran, T.G. Habatler, An improved deadbeat rectifier regulator using a neural net predictor. IEEE Trans. Power Electron. 10(4), 504–510 (1995)

    Article  Google Scholar 

  92. D.-C. Lee, K.-D. Lee, G- M. Lee, Voltage control of PWM converters using Feedback Linearization, in Proceedings of Thirty-Third IAS Annual Meeting. The 1998 IEEE, Vol. 2, 12–15 Oct. 1998, pp. 1491–1496

    Google Scholar 

  93. M.P. Kazmierkowski, R. Krishnan, F. Blaabjerg (Eds.), in Control in Power Electronics (Academic Press, New York, 2002), p. 579

    Google Scholar 

  94. R. Ottersten, J. Svensson, Vector current controlled voltage source converter-deadbeat control and saturation strategies. IEEE Trans. Power Electron. 17(2), 279–285 (2002)

    Article  Google Scholar 

  95. T. Ohnishi, Three-phase PWM converter/inverter by means of instantaneous active and reactive power control, in Proceedings of the IEEE-IECON Conference, 1991, pp. 819–824

    Google Scholar 

  96. V. Manninen, Application of direct torque control modulation technology to a line converter, in Proceedings of the EPE 1995 Conference, 1995, pp. 1.292–1.296

    Google Scholar 

  97. T. Noguchi, H. Tomiki, S. Kondo, I. Takahashi, Direct power control of PWM converter without power-source voltage sensors. IEEE Trans. Ind. Appl. 34(3), 473–479 (1998)

    Article  Google Scholar 

  98. H. Kim, H. Akagi, The instantaneous power theory on the rotating p-q-r reference frames, in Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems, 1999. PEDS ‘99, Vol. 1, 27–29 July 1999, pp. 422–427

    Google Scholar 

  99. J. Holtz, Pulsewidth modulation for electronics power conversion. Proc. IEEE 82(8), 1194–1214 (1994)

    Article  Google Scholar 

  100. M. Malinowski, M.P. Kazmierkowski, M. Jasiński, Virtual flux based direct power control of tree-phase PWM rectifiers, Electrical Power Quality and Utilization, Vol. VII, Sheet 1, 2001, pp. 129–138

    Google Scholar 

  101. www.twerd.pl

  102. G.E. Dullerud, F.G. Paganini, A course in robust control theory a convex approach, University of Illinois Urbana-Champaign and University of California Los Angeles, Springer, 2005, p. 383

    Google Scholar 

  103. www.nowaplus.com.pl

Download references

Acknowledgments

This work has been partially supported by the National Center for Research and Development, Poland, developing grant no. NR01 0014 06/2009 and also by the European Union in the framework of European Social Fund through the Warsaw University of Technology Development Program, realized by Center for Advanced Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Jasiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jasiński, M., Wrona, G., Piasecki, S. (2014). Control of Grid Connected Converter (GCC) Under Grid Voltage Disturbances. In: Orłowska-Kowalska, T., Blaabjerg, F., Rodríguez, J. (eds) Advanced and Intelligent Control in Power Electronics and Drives. Studies in Computational Intelligence, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-03401-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03401-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03400-3

  • Online ISBN: 978-3-319-03401-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics