Skip to main content

Sea Floor Rocks

  • Chapter
  • First Online:
Sea Floor Exploration

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

  • 1693 Accesses

Abstract

Sea floor rocks can reveal Earth’s history. Based on the various sampling operations conducted by ocean going scientists, it is inferred that the relative distribution of oceanic rocks includes about 50 % basalts/dolerites, 20 % gabbros and 30 % peridotites. Basalt and dolerite are the main volcanic rocks of the upper crust, gabbros are formed during the solidification of a magma chamber or magma conduit, and peridotites are either the heavy mineral residues left within the reservoirs after magma solidification or they could be the remains after a partial melting of mantle material. Basalt is the most common type of volcanic rock found on the sea floor. Basalt and other related rocks have been extruded after partial melting of the Earth’s mantle material. Rocks from the sea floor differ from those encountered on land due to their shape and their chemical composition. The effect of seawater and the pressure it exercises on hot, outpouring lava will fashion the shape of deep-sea volcanic rocks giving the sea floor a different appearance than what we see in subaerial environments. Curved and spherical-shaped pillow lavas are only found on the sea floor due to the fact that seawater pressure is equally applied on all directions of the lava flows and their cooling surfaces. Basalts consist of silicates of magnesium, plus iron and calcium oxides. Less common silica-enriched rocks (SiO2 > 53 %) such as andesites (SiO2 = 53–59 %), rhyolites (>70 %) and trachytes (SiO2 = 59–64 %) are also found on some undersea structures such as domes and seamounts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allerton SR, Searle RC, Burton B (1996) Bathymetric segmentation and faulting on the Mid-Atlantic Ridge, 24°00′N to 24°40′N: In tectonic magmatic, hydrothermal and Biological segmentation of Mid Ocean Ridges. In:MacLeod CJ, Tyler TA, Walker CL (eds) Geological Society Special Publication, London 118:29–48

    Google Scholar 

  • Aumento F, Loubat M (1971) The Mid-Atlantic Ridge near 45°N: serpentinized ultramafic intrusions. Can J Earth Scie 8:633–663

    Google Scholar 

  • Auzende J-M, Cornen G, Juteau T, Lagabrielle Y, Lensch G, Mevel C, Nicolas A, Prichard H, Ribeiro A, Vanney JR (group CYAGOR 11) (1982) The Gorringe Bank: first results of submersible expedition. CYAGOR 11, Terra Cognita 2:123–130

    Google Scholar 

  • Auzende J-M, Bideau D, Bonatti E, Cannat M, Honnorez J, Lagabrielle Y, Malavieille J, Mamaloukas-Frangoulis V, Mevel C (1989) Direct observation of a section through slow-spreading oceanic crust. Nature 337:726–729

    Article  Google Scholar 

  • Batiza R, Niu Y, Karsten JL, Boger W, Potts E, Norby L, Butler R (1996) Steady and non-steady state magma chambers below the East Pacific Rise. Geophys Res Lett 23(3):221–224

    Google Scholar 

  • Bazylev BA, Silantiev SA (2000) Geodynamic interpretation of the subsolidus recrystallization of mantle spinel peridotite 1. Mid-ocean ridges. Petrology 8(3) 2:91–213

    Google Scholar 

  • Bideau D, Hekinian R (1995) A dynamic model for generating small-scale heterogeneities in ocean floor basalt. Jour Geophys Res 100:10141–10162

    Article  Google Scholar 

  • Blackman DK, Cann JR, Janssen B, Smith DK (1998) Origin of extensional core complexes: evidence from the MAR at Atlantis fracture zone. J Geophys Res 103:21315–21334

    Article  Google Scholar 

  • Blackman DK, Karson JA, Kelley DS, Cann JR, Früh-Green GL, Gee JS, Hurst SD, John BE, Morgan J, Nooner SL, Ross DK, Schroeder TJ, Williams EA (2004) Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30°N): implications for the evolution of an ultramafic oceanic core complex. Mar Geophys Res 23(5–6):443–469

    Google Scholar 

  • Bonatti E (1976) Serpentinized protrusions in the oceanic crust. Earth Planet Sci Lett 32:107–113

    Article  Google Scholar 

  • Bonatti E, Clocchiatti E, Bonatti R, Clocchiatti P, Colantoni R, Gelmini G, Marinelli G, Ottonello R, Santacroce M, Taviani AA, Abdel-Meguid HS, Assaf, El Tahi MA (1983) Zabargad (St. John’s) Island: an uplifted fragment of sub-Red Sea lithosphere. J Geol Soc 140(4):677–690

    Google Scholar 

  • Bonatti E, Ligi M, Brunetti D, Cipriani A, Fabretti P, Vlentina Ferrante V, Gasparini L, Ottolini L (2003) Mantle thermal pulses below the Mid-Atlantic Ridge, and temporal variations in the formation of oceanic lithosphere. Nature 423:499–505

    Google Scholar 

  • Boillot G, Giradeau S, Kornpobst J (1988) The rifting of galicia margin: crustal thinning and emplacement of mantle rocks on the sea floor. Proc Ocean Drill Program Sci Results 103:741–756

    Google Scholar 

  • Boillot G, Besler MO, Krawczyk CM, Rappin D, Reston TJ (1995) The formation of passive margins: constraints from the crustal structure and segmentation of the deep galicia margin (Spain). Geol Soc Spec publ N°90:71–91

    Google Scholar 

  • Cannat M, Casey JF (1995) An ultramafic lift at the Mid-Atlantic ridge: successive stages of magmatism in serpentinized peridotites from the 15°N region. In: Vissers RLM, Nicholas A (Eds) Mantle and lower crust exposed in oceanic ridges and ophiolites, Kluwer Academic Publications, p 5–34

    Google Scholar 

  • Charpentier S, Kornprobst J, Chazot G, Cornen G, Boillot G (1998) Interaction entre lithosphère et asthénosphère au cours de l’ouverture océanique: données isotopiques préliminaires sur la marge passive de Galice (Atlantique-Nord). Comptes Rendus de l’Académie des sciences, Sciences de la Terre et des Planètes 326:757–762

    Google Scholar 

  • Chatelineua M, Niva D (1985) A chlorite solution geothermometer. The loz azufres mexico geothermal system. Contribution mineral Petrol 91:235–244

    Article  Google Scholar 

  • Christie DM, Sinton JM (1981) Evolution of abyssal lavas along propagating segments of the Galapagos spreading center. Earth Planet Sci Lett v56:321–335

    Google Scholar 

  • Christensen NI (1978) Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics 47:131–157

    Article  Google Scholar 

  • Chu D, Gordon RG (1999) Evidence for motion between Nubia and Somalia along the Southwest Indian Ridge. Nature 398:64–67

    Article  Google Scholar 

  • Clague DA, Frey FA, Thompson G, Rindge S (1981) Minor and trace element geochemistry of volcanic rocks dredged from the galapagos spreading center: role of crystal fractionation and mantle heterogeneity. J Geophys Res 86(B10):9469–9482

    Google Scholar 

  • Clarke DB, Loubat H (1997) Mineral analyses from the peridotite-gabbro-basalt complex at site 334, DSDP Leg 37. In: Aumento, Melson et al. 1997, Initial Report of Deep sea Drilling Project vol. 37 Washington (US Government printing Office) P1008:847–855

    Google Scholar 

  • Davis A, Clague D (1990) Gabbroic xenoliths from the northern Gorda Ridge: Implications for Magma chamber processes under slow spreading centers. J Geophys Res 95:10885–10905

    Google Scholar 

  • Darbyshire FA, White RS, Pristleir KF (2000) Structure of the crust and upper mantle of Iceland from combined seismic and gravity study. Earth Planet Scie Let 181(3):409–428

    Article  Google Scholar 

  • Dick HJB, Natland JH (1996) Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In:Leg 147 Mével C, Gillis K., Allan JF, Meye PS (eds) Proceedings Scientific Results ODP , pp 103–133, Ocean Drilling Program College station Texas

    Google Scholar 

  • Dixon JE, Clague DA, Eissen JP (1986) Gabbroic xenoliths and host ferrobasalt from the southern Juan de Fuca Ridge. J Geophys Res 91:3795–3820

    Google Scholar 

  • Escartin J, Hirth G, Evans B (1997) Nondilatant brittle deformation of serpentinites: Implications for Mohr-Coulomb theory and the strength of faults. J Geophys Res 102(B2):2897–2913

    Google Scholar 

  • Engel AEJ, Engel CG (1963) Basalts dredged from the northeastern Pacific Ocean. Science 140:1321–1324

    Article  Google Scholar 

  • Engel AEJ, Engel CG (1964) Continental accretion and the evolution of North America. Advancing frontiers in geology and geophysics, Volume in honour of M.S. Kishnam, Indian Geophysical Union, Hyderabad, pp 17–37

    Google Scholar 

  • Evans BW, Joannes W, Otterdoom H, Tromsdorff V (1976) Stability of chrysotile and antigorite in serpentine multisystem. Schweiz Miner Petrogr Mitt 56:79–93

    Google Scholar 

  • Feraud G, York D, Mevel C, Auzende J-M (1986) Additional 40Ar/40Ar dating of the basement and alkali basalt of the Gorringe Bank (Atlantic Ocean). Earth Planet Sc Lett 79:255–269

    Article  Google Scholar 

  • Fisher RL, Engel C (1969) Ultramafic and basaltic rocks dreged from nearshore flank of tonga trench. Geol Soc Amer Bull 80:1373–1378

    Article  Google Scholar 

  • Francheteau F, Patriat P, Segoufin J, Armijo R, Doucoure M, Yelles-Chaouche A, Zukin J, Calmant S, Naar DF, Searle RC (1988) Pito and orongo fracture zones: the northern and southern boundary of the easter microplate (South Pacific). J Earth planet Sci Let 89:363–374

    Google Scholar 

  • Francheteau J, Armijo R, Cheminee J-L, Hekinian R (1992) I MA East Pacific Rise Oceanic crust and uppermost mantle exposed by rifting in hess deep. Earth Planet Sci Lett 100:281–295

    Google Scholar 

  • Fryer P (1992) A synthesis of Leg 125 drilling of serpentine seamounts on the mariana and Izu-Bonin forearcs. In: Fryer P, Pearce JA, Stokking LB et al. (eds) Proceedings ODP, Scientific Results, 125: College Station, TX (Ocean Drilling Program), pp 593–614

    Google Scholar 

  • Fukao Y (1972) Thrust faulting at a lithospheric plate boundary the Portugal earthquake of 1969 Earth planet. Sci Lett 18:205

    Google Scholar 

  • Gavashi AT, Fox PJ, Ryan WBF (1973) Petrography of rocks from the crestal area of the Gorringe Bank. Proc Deep Sea Drill Program Init Rep 13:749–752

    Google Scholar 

  • Green J, Ringwood D (1967) The genesis of basaltic magmas. Contrib Miner Petrol 15:103–190

    Article  Google Scholar 

  • German CR, Parsons LM, HEAT Scientific Team (1996) Hydrothermal exploration near the AzoresTriple Jonction. Tectonic control of slow spreading ridge. Earth Plant Sci Lett 138:93–104

    Google Scholar 

  • Gracia E, Bideau D, LagabrielleY, Parson LM (1997) Along-axis magmatic oscillations and exposure of ultramafic rocks in a second-order segment of the Mid-Atlantic Ridge (35°45′N and 34°07°′N). Geology 25(12):1059–1063

    Google Scholar 

  • Haase KM, Stroncik N, Stoffers P (2005) Nb-depleted andesites from the Pacifi-Antarctic Rise as analogue for early continetal crust. Geology 33921–924. doi:10.1130/G 21899.1

    Google Scholar 

  • Haggerty JA (1987) Petrology and geochemistry of neogene sedimentary rocks from mariana forearc seamounts: implications for emplacement of the seamounts. In: Keating B, Fryer P, Batiza R, Boehlert GW (Eds) Seamounts, Islands, and Atolls. Geophys. Monogr. 43:175–185

    Google Scholar 

  • Hekinian R (1968) Rocks from the Mid-Oceanic ridge in the Indian Ocean. Deep Sea Res 15:195–213

    Google Scholar 

  • Hekinian R, Aumento F (1973) Rocks from the gibbs Fracture Zone and the minia seamount near 53°N in the Atlantic Ocean. Mar Geol 14:47–72

    Article  Google Scholar 

  • Hekinian R, Thompson G, Bideau D (1989) Axial and off-axial heterogeneity of basaltic rocks from the East Pacific Rise at 12°38′N–12°51′N and 11°26′N–11°30′N. J Geophys Res V94:17:437–463

    Google Scholar 

  • Hekinian R, Hoffert M, Larqué Ph, Cheminée J-L, Stoffers P, Bideau D (1993) Hydrothermal Fe- and Si- oxyhydroxide deposits from the South Pacific Intraplate volcanoes and East Pacific Rise axial and off-axial regions. Econ Geol 88(N°8):29

    Google Scholar 

  • Hekinian R, Stoffers P, Ackermand D, Binard N, Francheteau J, Devey C, Garbe-Shonberg D (1995) Magmatic evolution of the Easter Microplate-crough seamount region (South East Pacific). Mar Geophys Res 17:375–397

    Article  Google Scholar 

  • Hekinian R, Stoffers P, Ackermand D, Révillon S, Maia M, Bohn M, (1999) Ridge-hotspot interaction: the Pacific-Antarctic Ridge and the foundation seamounts. Marine Geol 160:199–223

    Google Scholar 

  • Hekinian R, Juteau T, Garcia E, Sichler S, Sichel G, Udintsev G, Apprioual R, Ligi M (2000) Submersible observations of the equatorial atlantic mantle: the St. Paul Fracture Zone, Mar. Geophys. Res 21:529–560

    Google Scholar 

  • Hekinian R, Cheminée J-L, Dubois J, Stoffers P, Scott S, Guivel C, Garbe-Schönberg D, Devey C, Bourdon B, Lackschewitz K, McMurtry G, Le Drezen E (2002) The pitcairn hotspot in the South Pacific: distribution and composition of submarin volcanic sequences. J Volcanol Geoth Res 121:219–245

    Article  Google Scholar 

  • Hess HH (1955) Serpentinized orogen. Geol Soc Amerca Spat Pap 62:391–407

    Article  Google Scholar 

  • Hess HH (1962) History of ocean basins. petrologic studies: a volume in honor of A. F. buddington. In: Engel AEJ, James HL, Leonard BF (eds) Geological Society of America, New York, pp 599–620

    Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plume from ancient oceanic crust. Earth Planet Sc Lett 57:421–436

    Article  Google Scholar 

  • Johannsen A (1931) A descriptive petrography of igneous rocks; Volume I, Introduction, textures, classifications. University of Chicago Press Chicago III, Chicago, pp 267

    Google Scholar 

  • Karasik AM (1974) The Eurasian basin of northern 1rctic Ocean In respect to plate tectonics. Geologiys Arckt Leningrad Nauchno Issled Institut. In Problrmy geologii Plyarnykh Oblastey Zemli Sbornik Statey, pp 23–31

    Google Scholar 

  • Karson JA, Dick HJB (1983) Tectonics of ridge- transform intersections at the Kane fracture zone. Mar Geophys Res 6:51–98

    Article  Google Scholar 

  • Karson JA (1990) Seafloor spreading at Mid-Atlantic ridge: implications for the structure of ophiolites and oceanic Lithosphere Produced in slow-spreading environments: In proceedings of the Ymposium TROODOS 1987. In: Malpas J, Moores EM, Panayotou A, Xenophontos C (eds) Geological Survey Dept Nicosia, Cyprus, pp 547–555

    Google Scholar 

  • Karson JA (1998) Internal structure of the oceanic Lithosphere: a perspective from tectonic window. 177–218. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y(eds) faulting and magmatism at Mid-Ocean Ridges, Geophysical Monograph 106, Am. Geophys.Union, Washington D.C, p 348

    Google Scholar 

  • Kay R, Hubbard NJ, Gast PW (1970) Chemical characteristics and origin of oceanic ridge volcanic rocks. J Geophys Res 75:1585–1613

    Article  Google Scholar 

  • Kirby (1985) Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones. Tectonophysics 119 issues 1–4:1–27

    Google Scholar 

  • Kushiro I (1969) The system forsterite-diopsite-silica with and without water at high pressure, Amer. J. Sci. Schaider 267:-A 269–294

    Google Scholar 

  • Lachenbruch A H (l973) A simple model for oceanic spreading centers. J Geophys Res 78:3395–3117

    Google Scholar 

  • Liou JG, Kuniyoshi S, Ito K (1974) Experimental studies of phase relations between greeshist and amphibolelite in a basaltic system. Am J Sci 274:613–632

    Article  Google Scholar 

  • Lonsdale P (1989) Segmentation of the Pacific-Nazca Spreading Center, 1°N–20°S. J Geophys Res 94(B9):12197–12225

    Google Scholar 

  • Marsh BD, Gunnarsson B, Congdon R, Cormdy R (1991) Hawaiin basalt and Icelandic rhyolite: indicator of differentiation and partial melting. Geol Rundsch 80:481–510

    Article  Google Scholar 

  • Matsumoto T, Kelemen PB, Party OS (1998) Preliminary results of the precise geological and geophysical mapping of the Mid-Atlantic Ridge 14–16°N—tectonic extension along the magma- poor ridge axis. Eos. Trans Am Geophys Union 79:F46

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 25(3):623–679

    Google Scholar 

  • Melson W, Byerly GR, Nelen JA, O’Hearn, Wright TL, Vallier T, (1977) A catalog of the major element chemistry of abyssal volcanic glassas. Smiththsonian Contributionn Earth Sci 19:31–60

    Google Scholar 

  • Mercier JC, Nicolas A (1975) Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487

    Google Scholar 

  • Meyzen CM, Toplis MJ, Humler E, Ludden JN, Mével C (2003) A discontinuity in mantle composition beneath the southwest Indian ridge. Nature 421:731–733

    Article  Google Scholar 

  • Michael PJ, Langmuir CH, Dick HJB, Snow JE, Goldstein SL, Graham DW, Lehnert K, Kurras G, Jokat W, Mühe WR, Edmonds HN (2003) Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423(6943):956–961

    Google Scholar 

  • Miller DJ, Christensen NI (1997) Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic ridge, south of the kane transformation zone (MARK). In: Karson JA, Cannat M, Miller DJ, Elthon D (Eds) Proceedings ODP Scientific Results 153 College Station, TX (Ocean Drilling Program), pp 437–451

    Google Scholar 

  • Mottl MJ (1989) Hydrothermal convection, reaction, and diffusion in sediments on the costa rica rift flank: pore-water evidence from ODP sites 677 and 678. In: Becker K, Sakai H et al. Proceedings ODP Scientific Results, 111: College Station, TX (Ocean Drilling Program), pp 195–213

    Google Scholar 

  • Muller C, Jokat W (2000) Seismic evidence for volcanic activity discovered in central Arctic. Eos 81:265

    Article  Google Scholar 

  • Myashiro A (1974) Volcanic rock series and tectonic setting. Annu Rev Earth Planet Sci 3:251

    Article  Google Scholar 

  • Naar DF, Hey RN (1986) East rift propagation along the east Pacific Rise near easter Island. J Geophys Res 91:3425–3438

    Google Scholar 

  • Nicolas A (1990) Les montagnes Sous la mer. Edition BRGM Avenue de Concyr, B.P. 6009, 45060, Orleans CEDEX 2 France, p 187

    Google Scholar 

  • Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry with age. J Geophys Res 82:803–827

    Article  Google Scholar 

  • Perfit MR, Chadwick Jr WW (1998) Magmatism at Mid-Ocean Ridges: constraints from volcanological and geothermal investigations. In Faulting and magmatism at Mid-Atlantic Ridges. In: Buck R, Delaney P, Karson JF, Lagabrielle Y, (eds) Gophysical Monogr 106 series II, pp 59–115

    Google Scholar 

  • Phipps Morgan J, Chen YJ (1993) The genesis of oceanic crust: magma injection, hydrothermal circulation, and crustal flow. J Geophys Res 98:6283–6297

    Article  Google Scholar 

  • Plank T, Langmuir CH (1992) Effects on the melting regime on the composition of ocean crust. J Geophys Res 97:19749–19770

    Article  Google Scholar 

  • Shand SJ (1949) Rocks of the Mid-Atlantic ridge. J Geology 57:89–91

    Article  Google Scholar 

  • Shido F, Miyashiro AM, Ewing M (1974) Basalts and serpentinite from the puerto ricotrench, 1. Petrol. Mar Geol 16(4):191–203

    Google Scholar 

  • Sleep NH (1969) Sensitivity of heat flow and gravity to the mechanism of sea-floor spreading. J Geophys Res 74:542–549

    Article  Google Scholar 

  • Stoffers P, Worthington T, Hekinian R, Petersen S, Hannington M, Turkey M et al (2003) Silicic volcanism and hydrothermal activity documented at Pacific-Antarctic Ridge. EOS 83(28):301–304

    Article  Google Scholar 

  • Tapponnier P, Francheteau J (1978) Necking of the lithosphere and the mechanics of slowly accreting plate boundaries. J Geophys Res 83(B8):3966–3970

    Google Scholar 

  • Thompson GW, Bryan WB, Humphris SE (1989) Axial volcanism on the eastpacific rise, 10°–12°N:In magmatism in Ocean basins. In: Saunders AD, Norry MJ (eds) Geological Society Special Publication 42, London, pp 181–200

    Google Scholar 

  • Toomey DR, Purdy GM, Solomon SC, Wilcock WSD (1990) The three-dimensional seismic velocity structure of the East Pacific Rise near latitude 9 30′N. Nature 347:639–645. doi:10.1038/347639a0

    Article  Google Scholar 

  • Turner FJ, Verhoogen FJ (1960) Igneous and metamorphic petrology. International series in earth science. McGraw Hill Book Comp Inc, New York, p 694

    Google Scholar 

  • Udintsev G, Beresnev B, Alexander F, Golod VM, Kol’tsova AV, Kurentsova NA, Zakharov MV, Agapova GV, Lyudmila P, Udintsev VG (1996) Geological structure of the strakhov fracture zone (equatorial segment of the Mid-Atlantic Ridge). Oceanology 35(4):544–558

    Google Scholar 

  • Wanless VD, Perfit MR, Ridley WI, Klein E (2010) Dacite petrogenesis on Mid-Ocean Ridges: evidence for oceanic crustal melting and assimilation. J petrol 51(12):2377–2410

    Article  Google Scholar 

  • Whitmarsh RB (1973) Median valley refraction line, Mid-Atlantic Ridge at 37∫N. Nature 246:297–299

    Article  Google Scholar 

  • Wolfe CJ, Purdy GM, Toomey DR, Solomon SC (1995) Microearthquake characteristics and crustal velocity structure at 29°N of the Mid-Atlantic Ridge: the architecture of slow-spreading segment. J Geophys Res 100:24449–24472

    Article  Google Scholar 

  • Yoder HS Jr (1976) Basic magma generation and aggregation. Bull Volcanol 41:301–316

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Hekinian .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hekinian, R. (2014). Sea Floor Rocks. In: Sea Floor Exploration. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-03203-0_4

Download citation

Publish with us

Policies and ethics