Skip to main content

Pulsed-Laser-Induced Epitaxial Growth of Silicon for Three-Dimensional Integrated Circuits

  • Chapter
Subsecond Annealing of Advanced Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 192))

  • 1411 Accesses

Abstract

Pulsed-Laser-induced epitaxial growth (PLEG) is an attractive method for lateral overgrowth of orientation-controlled silicon (Si). As underlying MOS-FETs on the seeding crystalline Si wafer is not thermally damaged, the PLEG is promising for monolithic 3D integration of circuits. This paper will review our systematic studies of both simulation and experiment on the PLEG of Si aimed for fundamental understanding of the epitaxial growth and reduction of defect generation. Experimentally a XeCl excimer-laser irradiates the sample which consists of amorphous-silicon (a-Si) deposited on a thick SiO2 with a small contact opening on a 〈100〉 oriented SOI or bulk-Si wafer. The experiment verified our 2D transient heat transfer simulation results that the combination of the long-pulse and the bulk-Si wafer gives the widest process window. The bulk-Si wafer seeding provided the larger Si island size of 6 μm than that of the SOI (4 μm). From Electron Backscattering Diffraction (EBSD) analysis it was found that 〈100〉 is the main surface crystallographic orientation. However there exist four, isolated secondary sub-grains inside the Si island. TEM cross-sectional image revealed formation of the subgrains due to formation of Σ3 (111) type of coincident site lattice (CSL) boundary originated at the SiO2 sidewall. We believe that the gentle slope of the side wall allows the extension of the facet to the CSL boundary and subgrains. At last we introduced a way to reduce the CSL boundary formation in the PLEG of Si. By using 75 steep sidewalls of the opening to the seed, we have successfully obtained an array of Si islands having a size of 4 μm with {100} surface orientation only, without any subgrains inside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Koyanagi, H. Kurino, K.W. Lee, K. Sakuma, N. Miyakawa, H. Itani, Future system-on-silicon LSI chips. IEEE MICRO 18(4), 17–21 (1998)

    Article  Google Scholar 

  2. A.W. Topol, D.C. La Tulipe Jr., L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U. Singco, A.M. Young, K.W. Guarini, M. Ieong, Three-dimensional integrated circuits. IBM J. Res. Dev. 50(4–5), 491–506 (2006)

    Article  Google Scholar 

  3. P. Batude, M. Vinet, A. Pouydebasque, C. Le Royer, B. Previtali, C. Tabone, J.M. Hartmann, L. Sanchez, L. Baud, V. Carron, A. Toffoli, F. Allain, V. Mazzocchi, D. Lafond, S. Deleonibus, O. Faynot, 3D monolithic integration, in 2011 IEEE International Symposium on Circuits and Systems (ISCAS) (2011), pp. 2233–2236

    Chapter  Google Scholar 

  4. M.R. Tajari Mofrad, J. Derakhshandeh, R. Ishihara, A. Baiano, J. van der Cingel, C.I.M. Beenakker, Monolithic stacking of single-grain thin-film transistors. Jpn. J. Appl. Phys. (2009)

    Google Scholar 

  5. R. Ishihara, J. Derakhshandeh, M.R. Tajari Mofrad, T. Chen, N. Golshani, C.I.M. Beenakker, Monolithic 3D-ICs with single grain Si thin film transistors. Solid-State Electron. 71(0), 80–87 (2012)

    Article  Google Scholar 

  6. J.F. Gibbons, K.F. Lee, T.J. Magee, J. Peng, R. Ormond, CW laser recrystallization of 〈100〉 Si on amorphous substrates. Appl. Phys. Lett. 34, 831 (1979)

    Article  Google Scholar 

  7. D. Hoonhout, C.B. Kerkdijk, F.W. Saris, Silicon epitaxy by pulsed laser annealing of evaporated amorphous films. Phys. Lett. A 66(2), 145–146 (1978)

    Article  Google Scholar 

  8. Y.-H. Son, J.-W. Lee, P. Kang, M.-G. Kang, J.B. Kim, S.H. Lee, Y.-P. Kim, I.S. Jung, B.C. Lee, S.Y. Choi, U.I. Chung, J.T. Moon, R.-I. Byung, Laser-induced epitaxial growth (LEG) technology for high density 3-D stacked memory with high productivity, in IEEE Symposium on VLSI Technology (2007), pp. 80–81

    Google Scholar 

  9. H. Ming, R. Ishihara, Y. Hiroshima, S. Indue, T. Shimoda, W. Metselaar, K. Beenakker, Effects of capping layer on grain growth with micro-Czochralski process during excimer laser crystallization. Jpn. J. Appl. Phys. Part 1 45(1A), 1–6 (2006)

    Article  Google Scholar 

  10. R. Ishihara, W.-C. Yeh, T. Hattori, M. Matsumura, Effects of light pulse duration on excimer-laser crystallization characteristics of silicon thin films. Jpn. J. Appl. Phys. Part 1 34(4A), 1759–1764 (1995)

    Article  Google Scholar 

  11. M. He, R. Ishihara, W. Metselaar, K. Beenakker, Agglomeration of amorphous silicon film with high energy density excimer laser irradiation. Thin Solid Films 515, 2878 (2007)

    Article  Google Scholar 

  12. G. Caginalp, An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92, 205–245 (1986)

    Google Scholar 

  13. C.E. Krill III., L.-Q. Chen, Computer simulation of 3-d grain growth using a phase-field model. Acta Mater. 50(12), 3059–3075 (2002)

    Article  Google Scholar 

  14. A. Burtsev, M. Apel, R. Ishihara, C.I.M. Beenakker, Phase-field modelling of excimer laser lateral crystallization of silicon thin films. Thin Solid Films 427(1–2), 309–313 (2003)

    Article  Google Scholar 

  15. M.R. Tajari Mofrad, A. La Magnay, R. Ishihara, M. He, K. Beenakker, A three-dimensional phase-field simulation of pulsed laser induced epitaxial growth of silicon. J. Optoelectron. Adv. Mater. 12(3), 701–706 (2010)

    Google Scholar 

  16. R. Ishihara, M.R. Tajari Mofrad, M. He, C.I.M. Beenakker. To be submitted

    Google Scholar 

  17. W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970), p. 49

    Book  Google Scholar 

  18. R. Ishihara, D. Danciu, F. Tichelaar, M. He, Y. Hiroshima, S. Inoue, T. Shimoda, J.W. Metselaar, C.I.M. Beenakker, Microstructure characterization of location-controlled Si-islands crystallized by excimer laser in the μ-Czochralski (grain filter) process. J. Cryst. Growth 299(2), 316–321 (2007)

    Article  Google Scholar 

  19. D.T.J. Hurle, A mechanism for twin formation during Czochralski and encapsulated vertical bridgman growth of III-V compound semiconductors. J. Cryst. Growth 147, 239 (1995)

    Article  Google Scholar 

  20. C.I. Drowley, G.A. Reid, R. Hull, Appl. Phys. Lett. 52, 546 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichi Ishihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ishihara, R., Tajari Mofrad, M.R., He, M., Beenakker, C.I.M. (2014). Pulsed-Laser-Induced Epitaxial Growth of Silicon for Three-Dimensional Integrated Circuits. In: Skorupa, W., Schmidt, H. (eds) Subsecond Annealing of Advanced Materials. Springer Series in Materials Science, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-03131-6_7

Download citation

Publish with us

Policies and ethics