Skip to main content

Data-Driven Methodologies for Battery State-of-Charge Observer Design

  • Chapter
  • First Online:
Automotive Battery Technology

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAUTOENG))

  • 4445 Accesses

Abstract

This chapter presents a data-based approach to nonlinear observer design for battery state of charge (SoC) estimation. The SoC observer is based on a purely data-driven model in order to allow for the application of the proposed concepts to any type of battery chemistry, especially when conventional physical modelling is not easily possible. In order to cope with the complex nonlinear dynamics of the battery, an integrated workflow for experiment design, model creation and automated observer design is proposed. The nonlinear battery model is constructed using a proven training algorithm based on the architecture of local model networks (LMNs). One important advantage of LMNs is that they offer local interpretability, which enables the extraction of local linear battery impedance models for automated nonlinear observer design. The proposed concepts are validated experimentally using real measurement data from a lithium-ion power cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arora P, Doyle M, Gozdz AS, White RE, Newman J (2000) Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries. J Power Sources 88(2):219–231. doi:10.1016/S0378-7753(99)00527-3

  2. Bhangu B, Bentley P, Stone D, Bingham C (2005) Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles. IEEE Trans Veh Technol 54(3):783–794. doi:10.1109/TVT.2004.842461

  3. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, USA

    Google Scholar 

  4. Brown M, Lightbody G, Irwin G (1997) Local model networks for nonlinear system identification. In: IEE colloquium on industrial applications of intelligent control (Digest No: 1997/144), pp 4/1–4/3. doi:10.1049/ic:19970785

  5. Chen G, Xie Q, Shieh LS (1998) Fuzzy kalman filtering. Inf Sci 109(14):197–209. doi:10.1016/S0020-0255(98)10002-6

    Google Scholar 

  6. Gomadam PM, Weidner JW, Dougal RA, White RE (2002) Mathematical modeling of lithium-ion and nickel battery systems. J Power Sources 110(2):267–284. doi:10.1016/S0378-7753(02)00190-8

    Google Scholar 

  7. Goodwin G, Payne R (1977) Dynamic system identification: experiment design and data analysis. In: Mathematics in science and engineering, vol 136. Academic Press, New York

    Google Scholar 

  8. Gregorcic G, Lightbody G (2007) Local model network identification with gaussian processes. IEEE Trans Neural Netw 18(5):1404–1423. doi:10.1109/TNN.2007.895825

    Google Scholar 

  9. Hametner C, Jakubek S (2007) Neuro-fuzzy modelling using a logistic discriminant tree. In: American control conference, 2007 ACC ’07, pp 864–869. doi:10.1109/ACC.2007.4283048

  10. Hametner C, Jakubek S (2013) Local model network identification for online engine modelling. Inf Sci 220(0):210–225, doi:10.1016/j.ins.2011.12.034, http://www.sciencedirect.com/science/article/pii/S0020025512000138, online Fuzzy machine learning and data mining

  11. Hametner C, Jakubek S (2013) State of charge estimation for lithium ion cells: design of experiments, nonlinear identification and fuzzy observer design. J Power Sources 238(0):413–421. doi:10.1016/j.jpowsour.2013.04.040

  12. Hametner C, Nebel M (2012) Operating regime based dynamic engine modelling. Control Eng Pract 20(4):397–407. doi:10.1016/j.conengprac.2011.10.003, http://www.sciencedirect.com/science/article/pii/S0967066111002085

  13. Hametner C, Mayr CH, Kozek M, Jakubek S (2013) PID controller design for nonlinear systems represented by discrete-time local model networks. Int J Control 86(9):1453–1466. doi:10.1080/00207179.2012.759663, http://www.tandfonline.com/doi/abs/10.1080/00207179.2012.759663, http://www.tandfonline.com/doi/pdf/10.1080/00207179.2012.759663

  14. Hametner C, Stadlbauer M, Deregnaucourt M, Jakubek S, Winsel T (2013) Optimal experiment design based on local model networks and multilayer perceptron networks. Eng Appl Artif Intell 26(1):251–261. doi:10.1016/j.engappai.2012.05.016, http://www.sciencedirect.com/science/article/pii/S0952197612001224

  15. Han J, Kim D, Sunwoo M (2009) State-of-charge estimation of lead-acid batteries using an adaptive extended kalman filter. J Power Sources 188(2):606–612. doi:10.1016/j.jpowsour.2008.11.143

  16. Hu Y, Yurkovich BJ, Yurkovich S, Guezennec Y (2009) Electro-thermal battery modeling and identification for automotive applications. In: ASME conference proceedings 2009(48937), pp 233–240. doi:10.1115/DSCC2009-2610

  17. Johansen TA, Foss BA (1995) Identification of non-linear system structure and parameters using regime decomposition. Automatica 31(2):321–326. doi:10.1016/0005-1098(94)00096-2

    Google Scholar 

  18. Klein R, Chaturvedi N, Christensen J, Ahmed J, Findeisen R, Kojic A (2010) State estimation of a reduced electrochemical model of a lithium-ion battery. In: American control conference (ACC), 2010, pp 6618–6623

    Google Scholar 

  19. Ljung L (2008) Perspectives on system identification. In: Proceedings of the 17th IFAC world congress

    Google Scholar 

  20. Mayr C, Hametner C, Kozek M, Jakubek S (2011) Piecewise quadratic stability analysis for local model networks. In: 2011 IEEE international conference on control applications (CCA), pp 1418–1424. doi:10.1109/CCA.2011.6044503

  21. Morris M (1995) Exploratory designs for computational experiments. J Stat Plan Infer 43(3):381–402. doi:10.1016/0378-3758(94)00035-T

    Google Scholar 

  22. Murray-Smith R, Johansen TA (1997) Multiple model approaches to modelling and control. Taylor & Francis, London

    Google Scholar 

  23. Nelles O (2002) Nonlinear system identification, 1st edn. Springer, Berlin

    Google Scholar 

  24. Polansky M, Ardil C (2007) Robust fuzzy observer design for nonlinear systems. Int J Math Comput Sci 3:1

    Google Scholar 

  25. Pronzato L (2008) Optimal experimental design and some related control problems. Automatica 44(2):303–325

    Article  MathSciNet  Google Scholar 

  26. Pucar P, Millnert M (1995) Smooth hinging hyperplanes—an alternative to neural networks. In: Proceedings of the 3rd ECC

    Google Scholar 

  27. Senthil R, Janarthanan K, Prakash J (2006) Nonlinear state estimation using fuzzy kalman filter. Ind Eng Chem Res 45(25):8678–8688. doi:10.1021/ie0601753

    Google Scholar 

  28. Simon D (2003) Kalman filtering for fuzzy discrete time dynamic systems. Appl Soft Comput 3(3):191–207. doi:10.1016/S1568-4946(03)00034-6

  29. Sjoberg J, Zhang Q, Ljung L, Benveniste A, Deylon B (1995) Nonlinear black-box modeling in system identification: a unified overview. Automatica 31:1691–1724

    Article  Google Scholar 

  30. Tanaka K, Ikeda T, Wang H (1998) Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans Fuzzy Syst 6(2):250–265. doi:10.1109/91.669023

    Google Scholar 

  31. Vasebi A, Partovibakhsh M, Bathaee SMT (2007) A novel combined battery model for state-of-charge estimation in lead-acid batteries based on extended kalman filter for hybrid electric vehicle applications. J Power Sources hybrid Electr Veh 174(1):30–40. doi:10.1016/j.jpowsour.2007.04.011

  32. Vasebi A, Bathaee S, Partovibakhsh M (2008) Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended kalman filter. Energy Convers Manage 49(1):75–82, doi:10.1016/j.enconman.2007.05.017

Download references

Acknowledgments

This work was supported by the Christian Doppler Research Association and AVL List GmbH, Graz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hametner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Hametner, C., Jakubek, S. (2014). Data-Driven Methodologies for Battery State-of-Charge Observer Design. In: Thaler, A., Watzenig, D. (eds) Automotive Battery Technology. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-02523-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02523-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02522-3

  • Online ISBN: 978-3-319-02523-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics