Skip to main content

Thermal Runaway: Causes and Consequences on Cell Level

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAUTOENG))

Abstract

Lithium-ion batteries play an ever-increasing role in our daily life. Therefore, it is important to understand the potential risks involved with these devices. In this work we demonstrate the thermal runaway characteristics of three types of commercially available lithium-ion batteries with the format 18650. The lithium-ion batteries were deliberately driven into thermal runaway by overheating under controlled conditions. Cell temperatures up to 850 \(^\circ \)C and a gas release of up to 0.27 mol were measured. The main gas components were quantified with gas-chromatography. The safety of lithium-ion batteries is determined by their composition, size, energy content, design and quality. This work investigated the influence of different cathode-material chemistry on the safety of commercial graphite-based 18650 cells. The active cathode materials of the three tested cell types were (a) LiFePO\(_4\), (b) Li(Ni\(_{0.45}\)Mn\(_{0.45}\)Co\(_{0.10}\))O\(_2\) and (c) a blend of LiCoO\(_2\) and Li(Ni\(_{0.50}\)Mn\(_{0.25}\)Co\(_{0.25}\))O\(_2\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abraham D, Roth EP, Kostecki R, McCarthy K, MacLaren S, Doughty D (2006) Diagnostic examination of thermally abused high-power lithium-ion cells. J Power Sources 161(1):648–657. doi:10.1016/j.jpowsour.2006.04.088, http://linkinghub.elsevier.com/retrieve/pii/S0378775306006768

    Google Scholar 

  2. Belov D, Yang MH (2008) Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid State Ionics 179(27–32):1816–1821. doi:10.1016/j.ssi.2008.04.031, http://linkinghub.elsevier.com/retrieve/pii/S0167273808003858

  3. Chen Z, Qin Y, Ren Y, Lu W, Orendorff C, Roth EP, Amine K (2011) Multi-scale study of thermal stability of lithiated graphite. Energy Environ Sci 4(10):4023. doi:10.1039/c1ee01786a, http://xlink.rsc.org/?DOI=c1ee01786a

    Google Scholar 

  4. Doughty D, Roth EP (2012) A general discussion of Li ion battery safety. Electrochem Soc Interface 21(2):37–44. http://www.scopus.com/inward/record.url?eid=2-s2.084867753898&partnerID=40&md5=19382decb891d60f28ef1049fca727ea

  5. Doughty DH, Roth EP, Crafts CC, Nagasubramanian G, Henriksen G, Amine K (2005) Effects of additives on thermal stability of Li ion cells. J Power Sources 146(1–2):116–120. doi:10.1016/j.jpowsour.2005.03.170, http://linkinghub.elsevier.com/retrieve/pii/S0378775305005057

    Google Scholar 

  6. Jhu CY, Wang YW, Shu CM, Chang JC, Wu HC (2011a) Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater 192(1):99–107. doi:10.1016/j.jhazmat.2011.04.097, http://www.ncbi.nlm.nih.gov/pubmed/21612866

    Google Scholar 

  7. Jhu CY, Wang YW, Wen CY, Chiang CC, Shu CM (2011b) Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries. J Therm Anal Calorim 106(1):159–163. doi:10.1007/s10973-011-1452-6, http://link.springer.com/10.1007/s10973-011-1452-6

    Google Scholar 

  8. Jhu CY, Wang YW, Wen CY, Shu CM (2012) Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology. Appl Energy 100:127–131. doi:10.1016/j.apenergy.2012.05.064, http://linkinghub.elsevier.com/retrieve/pii/S0306261912004655

    Google Scholar 

  9. Lee KS, Myung ST, Kim DW, Sun YK (2011) AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries. J Power Sources 196(16):6974–6977. doi:10.1016/j.jpowsour.2010.11.014, http://linkinghub.elsevier.com/retrieve/pii/S0378775310019208

    Google Scholar 

  10. Maleki H, Deng G, Anani A, Howard J (1999) Thermal stability studies of Li-ion cells and components. J Electrochem Soc 146(9):3224. doi:10.1149/1.1392458, http://link.aip.org/link/?JES/146/3224/1&Agg=doi

  11. Nagasubramanian G, Orendorff CJ (2011) Hydrofluoroether electrolytes for lithium-ion batteries: reduced gas decomposition and nonflammable. J Power Sources 196(20):8604–8609. doi:10.1016/j.jpowsour.2011.05.078, http://linkinghub.elsevier.com/retrieve/pii/S0378775311011049

  12. Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. Prog Batteries Sol Cells 9:209

    Google Scholar 

  13. Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G (2012) Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci 5(1):5271. doi:10.1039/c1ee02218k, http://xlink.rsc.org/?DOI=c1ee02218k

  14. Roth EP, Orendorff CJ (2012) How electrolytes influence battery safety. Electrochem Soc Interface 21(2):45–49. http://www.scopus.com/inward/record.url?eid=2-s2.084867822714&partnerID=40&md5=7ce53080e26e92d559c78118e5cd0e87

  15. Tobishima S, Yamaki J (1999) A consideration of lithium cell safety. J Power Sources 81–82:882–886. doi:10.1016/S0378-7753(98)00240-7, http://linkinghub.elsevier.com/retrieve/pii/S0378775398002407

  16. Wen CY, Jhu CY, Wang YW, Chiang CC, Shu CM (2012a) Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2. J Therm Anal Calorim 109(3):1297–1302. doi:10.1007/s10973-012-2573-2, http://link.springer.com/10.1007/s10973-012-2573-2

    Google Scholar 

  17. Wen J, Yu Y, Chen C (2012b) A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater Express 2(3):197–212. doi:10.1166/mex.2012.1075, http://openurl.ingenta.com/content/xref?genre=article&issn=2158-5849&volume=2&issue=3&spage=197

    Google Scholar 

  18. Zhang ZJ, Ramadass P (2012) Encyclopedia of sustainability science and technology. Springer, New York. doi:10.1007/978-1-4419-0851-3, http://link.springer.com/10.1007/978-1-4419-0851-3

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the “COMET K2—Competence Centres for Excellent Technologies Programme” of the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ), the Austrian Research Promotion Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG).

We would furthermore like to express our thanks to our supporting scientific project partners, namely Graz Centre for Electron Microscopy and the Graz University of Technology, Institute of Chemical Engineering and Environmental Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey W. Golubkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Golubkov, A.W., Fuchs, D. (2014). Thermal Runaway: Causes and Consequences on Cell Level. In: Thaler, A., Watzenig, D. (eds) Automotive Battery Technology. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-02523-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02523-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02522-3

  • Online ISBN: 978-3-319-02523-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics