Skip to main content

Symbolic-Numerical Algorithm for Generating Cluster Eigenfunctions: Identical Particles with Pair Oscillator Interactions

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2013)

Abstract

The quantum model of a cluster, consisting of A identical particles, coupled by the internal pair interactions and affected by the external field of a target, is considered. A symbolic-numerical algorithm for generating \(A\!\!-\!\!1\)-dimensional oscillator eigenfunctions, symmetric or antisymmetric with respect to permutations of A identical particles in the new symmetrized coordinates, is formulated and implemented using the MAPLE computer algebra system. Examples of generating the symmetrized coordinate representation for \(A\!\!-\!\!1\) dimensional oscillator functions in one-dimensional Euclidean space are analyzed. The approach is aimed at solving the problem of tunnelling the clusters, consisting of several identical particles, through repulsive potential barriers of a target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moshinsky, M., Smirnov, Y.F.: The harmonic oscillator in modern physics. Informa Health Care, Amsterdam (1996)

    MATH  Google Scholar 

  2. Kramer, P., Moshinsky, M.: Group theory of harmonic oscillators (III). States with permutational symmetry. Nucl. Phys. 82, 241–274 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aguilera-Navarro, V.C., Moshinsky, M., Yeh, W.W.: Harmonic-oscillator states and the α particle I. Form factor for symmetric states in configuration space. Ann. Phys. 51, 312–336 (1969)

    Article  Google Scholar 

  4. Aguilera-Navarro, V.C., Moshinsky, M., Kramer, P.: Harmonic-oscillator states and the α particle II. Configuration-space states of arbitrary symmetry. Ann. Phys. 54, 379–393 (1969)

    Article  Google Scholar 

  5. Lévy-Leblond, J.-M.: Global and democratic methods for classifying N particle states. J. Math. Phys. 7, 2217–2229 (1966)

    Article  MATH  Google Scholar 

  6. Neudatchin, V.G., Smirnov, Y.F.: Nucleon clusters in the light nuclei, Nauka, Moscow (1969) (in Russian)

    Google Scholar 

  7. Novoselsky, A., Katriel, J.: Non-spurious harmonic oscillator states with arbitrary symmetry. Ann. Phys. 196, 135–149 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wildermuth, K., Tang, Y.C.: A unified theory of the nucleus. Academic Press, New York (1977)

    Book  Google Scholar 

  9. Kamuntavičius, G.P., Kalinauskas, R.K., Barrett, B.R., Mickevičius, S., Germanas, D.: The general harmonic-oscillator brackets: compact expression, symmetries, sums and Fortran code. Nucl. Phys. A 695, 191–201 (2001)

    Article  MATH  Google Scholar 

  10. Wang, Z., Wang, A., Yang, Y., Xuechao, L.: Exact eigenfunctions of N-body system with quadratic pair potential. arXiv:1108.1607v4 (2012)

    Google Scholar 

  11. Pen’kov, F.M.: Metastable states of a coupled pair on a repulsive barrier. Phys. Rev. A 62, 44701–44701 (2000)

    Article  Google Scholar 

  12. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.: Symbolic-numerical algorithms to solve the quantum tunneling problem for a coupled pair of ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Dobrowolski, A., Góźdź, A., Mazurek, K., Dudek, J.: Tetrahedral symmetry in nuclei: new predictions based on the collective model. International Journal of Modern Physics E 20(2), 500–506

    Google Scholar 

  14. Dobrowolski, A., Szulerecka, A., Góźdź, A.: Electromagnetic transitions in hypothetical tetrahedral and octahedral bands. In: Góźdź, A. (ed.) Hidden symmetries in intrinsic frame Proc. 19th Nuclear Physics Workshop in Kazimierz Dolny (September 2012), http://kft.umcs.lublin.pl/wfj/archive/2012/proceedings.php

  15. Fock, V.A.: Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zs. Phys. 61, 126–148 (1930)

    Article  MATH  Google Scholar 

  16. Hamermesh, M.: Group theory and its application to physical problems. Dover, New York (1989)

    Google Scholar 

  17. Kanada-En’yo, Y., Hidaka, Y.: α-cluster structure and density waves in oblate nuclei. Phys. Rev. C 84, 014313-1–014313-16 (2011)

    Google Scholar 

  18. Jepsent, D.W., Hirschfelder, J.O.: Set of co-ordinate systems which diagonalize the kinetic energy of relative motion. Proc. Natl. Acad. Sci. U.S.A. 45, 249–256 (1959)

    Article  Google Scholar 

  19. Abramovits, M., Stegun, I.A.: Handbook of Mathematical Functions, p. 1037. Dover, New York (1972)

    Google Scholar 

  20. Baker Jr., G.A.: Degeneracy of the n-dimensional, isotropic, harmonic oscillator. Phys. Rev. 103, 1119–1120 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lévy-Leblond, J.M.: Generalized uncertainty relations for many-fermion system. Phys. Lett. A 26, 540–541 (1968)

    Article  Google Scholar 

  22. Vinitsky, S., Gusev, A., Chuluunbaatar, O., Rostovtsev, V., Le Hai, L., Derbov, V., Krassovitskiy, P.: Symbolic-numerical algorithm for generating cluster eigenfunctions: quantum tunneling of clusters through repulsive barriers. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 427–442. Springer, Heidelberg (2013)

    Google Scholar 

  23. Pogosyan, G.S., Smorodinsky, Y.A., Ter-Antonyan, V.M.: Oscillator Wigner functions. J. Phys. A 14, 769–776 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Gusev, A. et al. (2013). Symbolic-Numerical Algorithm for Generating Cluster Eigenfunctions: Identical Particles with Pair Oscillator Interactions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2013. Lecture Notes in Computer Science, vol 8136. Springer, Cham. https://doi.org/10.1007/978-3-319-02297-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02297-0_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02296-3

  • Online ISBN: 978-3-319-02297-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics