Skip to main content

The Development of Biaxial Testing Devices and Procedures for Architectural Fabrics

  • Chapter
  • First Online:
Biaxial Testing for Fabrics and Foils

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSPOLIMI))

  • 788 Accesses

Abstract

This chapter analyses the technical requirements for the development of biaxial testing devices and procedures for architectural fabrics. The description includes the overall shape and stiffness of the frame, the sample shape and dimensions, the clamping system, the stroke of the actuators, the loading profile, the transducers for force, strain and displacement, the temperature and humidity conditions, the control system and the calibration. Finally, the chapter describes the aspects which should be considered in the development of a testing protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These values can be interpreted in terms of time: the proportional contribute depends on the present error, the integrative contribute on the accumulation of past errors, and he derivative contribute is a prediction of future errors.

References

  • ASTM D5034–09:2013 Standard test method for breaking strength and elongation of textile fabrics (Grab Test). American Society for Testing and Materials International

    Google Scholar 

  • Bartle NJ, Gosling PD, Bridgens BN (2013) A neutral network material model for the analysis of fabric structures. In: Bogner-Balz H, Mollaert M, Pusat E (Eds), Tensinet symposium [RE]thinking lightweight structures, Istanbul, pp 33–41

    Google Scholar 

  • Beccarelli P, Bridgens BN, Galliot C, Gosling P, Stimpfle B, Zanelli A (2011) Round-robin biaxial tensile testing of architectural coated fabrics. In: International symposia IABSE-IASS 2011: taller, longer, lighter. London, pp 1–10

    Google Scholar 

  • Beccarelli P, Colasante G, Novati G, Stimpfle B, Zanelli A (2013) Strain-controlled biaxial tests of coatedfabric membranes. In: Bogner-Balz H, Mollaert M, Pusat E (eds), Tensinet Symposium [RE]THINKING Lightweight Structures, Istanbul, May 2013, pp 53–65

    Google Scholar 

  • Blum R, Bögner-Balz H (2001) A new class of biaxial machine. TensiNews, 1:4

    Google Scholar 

  • Blum R, Bogner-Balz H (2002) Evaluation method for the elastic moduli. Tensinews, 3:3

    Google Scholar 

  • Blum R, Bogner-Balz H (2007) Tears and damages in textile architecture: should tear propagation be considered for design?. In: Bogner-Balz H, Zanelli A (eds) Tensinet Symposium 2007. Ephemeral architecture, time and textiles, Milano, April 2007.Clup, Milano, pp 239–248

    Google Scholar 

  • Blum R, Bögner H, Némoz G (2004) Testing methods and standards. In: Foster B, Mollaert M (eds) European design guide for tensile surface structures. TensiNet, Brussels, pp 294–322

    Google Scholar 

  • Bögner H (2004) Vorgespannte Konstruktionen aus beschichteten Geweben und die Rolle des Schubverhaltens bei der Bildung von zweifach gekrümmten Flächen aus ebenen Streifen. PhD thesis, Institut für Werkstoffe im Bauwesen der Universität Stuttgart

    Google Scholar 

  • Boisse P, Borr M, Buet K, Cherouat A (1997) Finite element simulations of textile composite forming including the biaxial fabric behaviour. Compos B Eng 28(4):453–464

    Article  Google Scholar 

  • Bridgens BN (2005) Architectural fabric properties: determination, representation and prediction. PhD thesis, University of Newcastle upon Tyne

    Google Scholar 

  • Bridgens B, Birchall M (2012) Form and function: the significance of material properties in the design of tensile fabric structures. Eng Struct 44:1–12

    Article  Google Scholar 

  • Bridgens BN, Gosling PD (2004) Direct stress-strain representation for coated woven fabrics. Comput Struct. 82(23–26):1913–1927

    Google Scholar 

  • Bridgens BN, Gosling PD (2010) Interpretation of results from the MSAJ testing method for elastic constants of membrane materials. In: Bogner-Balz H, Mollaert M (eds) Tensinet symposium 2010. Tensile architecture: connecting past and future, Sofia. GPS 1900, Bulgaria, pp 49–57

    Google Scholar 

  • Bridgens BN, Gosling PD, Birchall MJS (2004) Membrane material behaviour: concepts, practice and developments. Struct Eng 82(14):28–33

    Google Scholar 

  • Bridgens BN, Gosling PD, Patterson CH, Rawson SJ, Hove N (2009) Importance of material properties in fabric structure design and analysis. In: Domingo A, Lazaro C (eds) Proceedings of the international association for shell and spatial structures (IASS) symposium 2009. Evolution and trends in design, analysis and construction of shell and spatial structures, Valencia, pp 2180–2191

    Google Scholar 

  • Carvelli V, Corazza C, Poggi C (2008) Mechanical modelling of monofilament technical textiles. Comput Mater Sci 42(4):679–691

    Article  Google Scholar 

  • Checkland PB, Bull TH, Bakker EJ (1958) A two-dimensional load-extension tester for fabrics and film. Text Res J 28(5):399–403

    Article  Google Scholar 

  • Chen S, Ding X, Fangueiro R, Yi H, Ni J (2007) Tensile behavior of PVC-coated woven membrane materials under uni- and bi-axial loads. J Appl Polym Sci 107(3):2038–2044

    Article  Google Scholar 

  • Day AS (1986) Stress strain equations for non-linear behaviour of coated woven fabrics. In: Heki K (1986) Shells, membranes, and space frames: proceedings of the IASS symposium on membrane structures and space frames. Butterworth-Heinemann Limited, Osaka, pp 17–24

    Google Scholar 

  • EN ISO 1421:2000 Rubber- or plastics-coated fabrics—determination of tensile strength and elongation at break. European Committee for standardisation. International Organization for Standardization

    Google Scholar 

  • EN ISO 7500-1:2004 Metallic materials—Verification of static uniaxial testing machines-Part 1: Tension/compression testing machines—Verification and calibration of the force-measuring system. European Committee for standardisation. International Organization for Standardization

    Google Scholar 

  • EN ISO 899-1:2003 Plastics. Determination of creep behaviour. Tensile creep. European Committee for standardisation. International Organization for Standardization

    Google Scholar 

  • EN ISO 4674-1:2003 Rubber- or plastics-coated fabrics—Determination of tear resistance - Part 1: Constant rate of tear methods. European Committee for standardisation. International Organization for Standardization

    Google Scholar 

  • EN ISO 2231:1995 Rubber- Or Plastics-coated Fabrics—Standard Atmospheres For Conditioning And Testing. European Committee for standardisation. International Organization for Standardization

    Google Scholar 

  • EN ISO 291:2008 Plastics—Standard atmospheres for conditioning and testing. European Committee for standardisation. International Organization for Standardization

    Google Scholar 

  • EN ISO 2286-1:1998 Rubber- or plastics-coated fabrics - Determination of roll characteristics - Part 1: Methods for determination of length, width and net mass

    Google Scholar 

  • Foster B, Mollaert M (eds) (2004) European design guide for tensile surface structures. TensiNet, Brussels

    Google Scholar 

  • Galliot C, Luchsinger RH (2009) A simple model describing the non-linear biaxial tensile behaviour of PVC-coated polyester fabrics for use in finite element analysis. Compos Struct 90(4):438–447

    Article  Google Scholar 

  • Galliot C, Luchsinger RH (2010) Biaxial testing of architectural membranes and foils. In: Bogner-Balz H, Mollaert M (eds) Tensinet Symposium 2010. Tensile Architecture: Connecting Past and Future, Sofia, Sept 2010. GPS 1900, Bulgaria, pp 39–48

    Google Scholar 

  • Gosling PD, Bridgens BN (2007) Material testing and computational mechanics—a new philosophy for architectural fabrics. In: Bogner-Balz H, Zanelli A (eds) Tensinet symposium 2007. Ephemeral architecture, time and textiles, Milano, Clup, pp 75–98

    Google Scholar 

  • Gosling PD, Bridgens BN (2008) Material testing and computational mechanics: a new philosophy for architectural fabrics. Int J Space Struct 23(4):215–232

    Article  Google Scholar 

  • Happold E (1987) Design and Construction of the Diplomatic Club, Riyadh. Struct Eng 65(10):377–382

    Google Scholar 

  • Kyoung JK, Woong-Ryeol Yu, Min SK (2008) Anisotropic creep modeling of coated textile membrane using finite element analysis. Compos Sci Technol. 68:688–1696

    Google Scholar 

  • Minami H (2006) A multi-step linear approximation method for nonlinear analysis of stress and deformation of coated plain-weave fabric. J Text Mach Soc Jpn 52(5):189–195

    Google Scholar 

  • MSAJ/M-02:1995 Testing method for elastic constants of membrane materials. Membrane Structures Association of Japan

    Google Scholar 

  • Pompo JCM (2012) Mechanical characterization of fabrics for inflatable structures. ProQuest, UMI Dissertation Publishing

    Google Scholar 

  • Pudenz J (2004) Materials and workmanship. In: Koch K (ed) Membrane structures: the fifth building material. Prestel, Munich, pp 48–65

    Google Scholar 

  • Reinhardt HW (1976) On the biaxial testing and strength of coated fabrics. Exp Mech 16(2):71–74

    Article  Google Scholar 

  • Seidel M (2009) Tensile surface structures. A practical guide to cable and membrane construction. Materials, design, assembly and erection. Wiley-VCH, Weinheim

    Google Scholar 

  • Uhlemann J, Stranghöner N, Schmidt H, Saxe K (2011) Effects on elastic constants of technical membranes applying the evaluation methods of MSAJ/M-02-1995. In: Oñate E, Kröplin B, Bletzinger K-U (eds) V international conference on textile composites and inflatable structures, structural membranes, Barcelona, pp 1–12

    Google Scholar 

  • Wakefield D (2004) Membrane engineering. In: Koch K (ed) Membrane structures: the fifth building material. Prestel, Munich, pp 98–123

    Google Scholar 

  • Woong-Ryeol Yu, Min SK, Joon SK (2006) Modeling of Anisotropic Creep Behavior of Coated Textile Membranes. Fibers Polym. 7(2):123–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Beccarelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Beccarelli, P. (2015). The Development of Biaxial Testing Devices and Procedures for Architectural Fabrics. In: Biaxial Testing for Fabrics and Foils. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-02228-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02228-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02227-7

  • Online ISBN: 978-3-319-02228-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics