Skip to main content

Brief Review of the Membrane Structure Context

  • Chapter
  • First Online:
Biaxial Testing for Fabrics and Foils

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSPOLIMI))

  • 804 Accesses

Abstract

This chapter offers a brief introduction to tensioned membrane structures and describes the recent developments in their design. The most relevant international associations operating in this field are presented together with the most significant research projects funded in the last decades in order to promote the use of membrane structures. The current design codes and testing standards are described in detail with a focus on the structural design and the mechanical performance of architectural fabrics and foils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Design and manufacture of minimum energy forms of lightweight tension membranes, 1998–2000, FP4-BRITE/EURAM 3, Fourth Framework Programme.

  2. 2.

    Thematic Network on Tensile Structure, 2001–2004, GROWTH-KA1/FP5, Fifth Framework Programme.

  3. 3.

    Novel structural skins: Improving sustainability and efficiency through new structural textile materials and designs, 2013–2017, Action TU1303, Transport and Urban Development.

References

  • Ando K, Ishii A, Suzuki T, Masuda K, Saito Y (1999) Design and construction of a double membrane air-supported structure. Eng Struct 21(8):786–794

    Article  Google Scholar 

  • ASCE/SEI 55-10 2010 Tensile membrane structures. American Society of Civil Engineers, Reston

    Google Scholar 

  • Barnes M (1999) Form finding and analysis of tension structures by dynamic relaxation. Int J Space Struct 14(2):89–104

    Article  Google Scholar 

  • Bassett RJ, Postle R, Pan N (1999) Experimental methods for measuring fabric mechanical properties: a review and analysis. Text Res J 69(11):866–875

    Article  Google Scholar 

  • Beccarelli P, Bridgens BN, Galliot C, Gosling P, Stimpfle B, Zanelli A (2011) Round-robin biaxial tensile testing of architectural coated fabrics. In: International symposia IABSE-IASS 2011: taller, longer, lighter, London, pp 1–10

    Google Scholar 

  • Beccarelli P, Colasante G, Novati G, Stimpfle B, Zanelli A (2013) Strain-controlled biaxial tests of coated fabric membranes. In: Bogner-Balz H, Mollaert M, Pusat E (eds), Tensinet symposium [re]thinking lightweight structures, Istanbul, pp 53–65

    Google Scholar 

  • Berger H (1999) Form and function of tensile structures for permanent buildings. Eng Struct 21(8):669–679

    Article  Google Scholar 

  • Blum R, Bögner-Balz H (2001) A new class of biaxial machine. TensiNews 1:4

    Google Scholar 

  • Blum R, Bögner H, Némoz G (2004) Testing methods and standards. In: Foster B, Mollaert M (eds) European design guide for tensile surface structures. TensiNet, Brussels, pp 294–322

    Google Scholar 

  • Bridgens BN (2005) Architectural fabric properties: determination, representation and prediction. PhD thesis, University of Newcastle upon Tyne

    Google Scholar 

  • Bridgens BN, Gosling PD (2004) Direct stress-strain representation for coated woven fabrics. Comput Struct 82(23–26):1913–1927

    Article  Google Scholar 

  • Bridgens BN, Gosling PD (2008) A predictive fabric model for membrane structure design. In: Oñate E, Kröplin B (eds) Textile composites and inflatable structures II. Springer, Dordrecht, pp 35–50

    Chapter  Google Scholar 

  • Bridgens BN, Gosling PD (2010) Interpretation of results from the MSAJ “Testing Method for Elastic Constants of Membrane Materials”. In: Bogner-Balz H, Mollaert M (eds) Tensinet symposium 2010. Tensile architecture: connecting past and future, Sofia. GPS 1900, Bulgaria, pp 49–57

    Google Scholar 

  • Bridgens BN, Gosling PD, Birchall MJS (2004a) Membrane material behaviour: concepts, practice and developments. Struct Eng 82(14):28–33

    Google Scholar 

  • Bridgens BN, Gosling PD, Birchall MJS (2004b) Tensile fabric structures: concepts, practice and developments. Struct Eng 82(14):21–27

    Google Scholar 

  • Bridgens BN, Gosling PD, Jou G-T, Hsu X-Y (2012) Inter-laboratory comparison of biaxial tests for architectural textiles. J Text Inst 103(7):706–718

    Google Scholar 

  • Campioli A, Zanelli A (eds) (2009) Architettura tessile: progettare e costruire membrane e scocche. Il Sole 24 Ore, Milano

    Google Scholar 

  • Campioli A, Mangiarotti A, Zanelli A (2007) Learning from the past to renew ephemeral architecture in the Italian context. In: Bogner-Balz H, Zanelli A (eds) Tensinet symposium 2007. Ephemeral architecture, time and textiles, Milano. Clup, Milano, pp 187–201

    Google Scholar 

  • Checkland PB, Bull TH, Bakker EJ (1958) A two-dimensional load-extension tester for fabrics and film. Text Res J 28(5):399–403

    Article  Google Scholar 

  • EN 13782:2005 Temporary structures—tents—safety. European Committee for Standardisation

    Google Scholar 

  • EN ISO 13934-1:1999 Textiles—tensile properties of fabrics—part 1: determination of maximum force and elongation at maximum force using the strip method. European Committee for Standardisation. International Organization for Standardization

    Google Scholar 

  • EN ISO 13934-2:2000 Textiles—tensile properties of fabrics—part 2: determination of maximum force using the grab method. European Committee for Standardisation. International Organization for Standardization

    Google Scholar 

  • EN ISO 1421:2000 Rubber- or plastics-coated fabrics—determination of tensile strength and elongation at break. European Committee for Standardisation. International Organization for Standardization

    Google Scholar 

  • EN ISO 1798:2008 Flexible cellular polymeric materials—determination of tensile strength and elongation at break. European Committee for Standardisation. International Organization for Standardization

    Google Scholar 

  • EN 1875-3:1997 Rubber- or plastics- coated fabrics—determination of tear strength—part 3: trapezoidal method. European Committee for Standardisation

    Google Scholar 

  • EN ISO 4674-2:1998 Rubber- or plastics-coated fabrics—determination of tear resistance—part 2: ballistic pendulum method. European Committee for Standardisation. International Organization for Standardization

    Google Scholar 

  • EN ISO 4674-1:2003 Rubber- or plastics-coated fabrics—determination of tear resistance—part 1: constant rate of tear methods. European Committee for Standardisation. International Organization for Standardization

    Google Scholar 

  • EU Regulation (2011) 305/2011 Construction products. Regulation of the European Parliament

    Google Scholar 

  • Faegre T (1979) Tents: architecture of the nomads. Anchor Press/Doubleday, Garden City

    Google Scholar 

  • Foster B, Mollaert M (eds) (2004) European design guide for tensile surface structures. TensiNet, Brussels

    Google Scholar 

  • Freeston WD, Platt MM, Schoppee MM (1967) Mechanics of elastic performance of textile materials. Text Res J 37(11):948–975

    Article  Google Scholar 

  • Galliot C, Luchsinger RH (2009) A simple model describing the non-linear biaxial tensile behaviour of PVC-coated polyester fabrics for use in finite element analysis. Compos Struct 90(4):438–447

    Article  Google Scholar 

  • Galliot C, Luchsinger RH (2010a) Biaxial testing of architectural membranes and foils. In: Bogner-Balz H, Mollaert M (eds) Tensinet symposium 2010. Tensile architecture: connecting past and future, Sofia. GPS 1900, Bulgaria, pp 39–48

    Google Scholar 

  • Galliot C, Luchsinger RH (2010b) The shear ramp: a new test method for the investigation of coated fabric shear behaviour—part II: experimental validation. Compos A Appl Sci Manuf 41(12):1750–1759

    Article  Google Scholar 

  • Gosling PD, Bridgens BN (2007) Material testing and computational mechanics—a new philosophy for architectural fabrics. In: Bogner-Balz H, Zanelli A (eds) Tensinet symposium 2007. Ephemeral architecture, time and textiles, Milano. Clup, Milano, pp 75–98

    Google Scholar 

  • Gulvanessian H (2009) EN 1990 Eurocode “basis of structural design”—the innovative head Eurocode. Steel Construct 2(4):222–227

    Article  Google Scholar 

  • Habermann KJ (2004) The history of membrane building. In: Koch K (ed) Membrane structures: the fifth building material. Prestel, Munich, pp 18–45

    Google Scholar 

  • Houtman R (ed) (2013) Design recommendations for ETFE foil structures appendix A5 of European design guide for surface tensile structures. TensiNet, Brussels

    Google Scholar 

  • Klein WG (1959) Stress-strain response of fabrics under two-dimensional loading. Text Res J 29(10):816–821

    Article  Google Scholar 

  • Lewis WJ (2005) Design of tension structures: challenges and misconceptions. Proc ICE Municipal Eng 158(3):231–241

    Article  Google Scholar 

  • MSAJ/M-02:1995 Testing method for elastic constants of membrane materials. Membrane Structures Association of Japan

    Google Scholar 

  • Otto F (ed) (1982) Naturliche Konstruktionen: Formen und Konstruktionen in Natur und Technik und Prozesse ihrer Entstehung. Deutsche Verlags-Anstalt, München

    Google Scholar 

  • Otto F, Rash B (1996) Finding form: towards an architecture of the minimal. Axel Menges, Stuttgart

    Google Scholar 

  • Reichardt CH, Woo HK, Montgomery DJ (1953) A two-dimensional load-extension tester for woven fabrics. Text Res J 23(6):424–428

    Article  Google Scholar 

  • Reinhardt HW (1976) On the biaxial testing and strength of coated fabrics. Exp Mech 16(2):71–74

    Article  Google Scholar 

  • Seidel M (2009) Tensile surface structures. A practical guide to cable and membrane construction, materials, design, assembly and erection. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Uhlemann J, Stranghöner N (2013) Spectra of computed fabric stress and deformation values due to a range of fictitious elastic constants obtained from different established determination procedures. In: Bletzinger KU, Kröplin B, Oñate E (eds) 6th international conference on textile composites and inflatable structures, structural membranes, Munich, pp 419–430

    Google Scholar 

  • Uhlemann J, Stranghöner N, Schmidt H, Saxe K (2011) Effects on Elastic Constants of Technical Membranes Applying the Evaluation Methods of MSAJ/M-02-1995. In: Oñate E, Kröplin B, Bletzinger K-U (eds) 5th international conference on textile composites and inflatable structures, structural membranes, Barcellona, pp 1–12

    Google Scholar 

  • Wendland D (2003) Model based formfinding processes free forms in structural and architectural design. In: Levi F, Chiorino MA, Bertolini Cestari C (eds) Eduardo Torroja: from the philosophy of structures to the art and science of building. Franco Angeli, Milano

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Beccarelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Beccarelli, P. (2015). Brief Review of the Membrane Structure Context. In: Biaxial Testing for Fabrics and Foils. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-02228-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02228-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02227-7

  • Online ISBN: 978-3-319-02228-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics