Skip to main content

Abstract

Dislocation geometries, energetics, generation, interaction, dissociation, and multiplication are described as these relate to deformation and related properties in crystalline materials. Rotation-induced imperfections described as disclinations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banhart F, Ajayan PM (1996) Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382:433–435

    Article  Google Scholar 

  • Bardeen J, Herring C (1952) Imperfections in nearly perfect crystals. Wiley, New York, p 261

    Google Scholar 

  • Bernstein IM, Rath BB, Thomas LE (1972) Grain boundary dislocations. In: Thomas G, Fulrath RM, Fisher RM (eds) Electron microscopy and structure of materials. University of California Press, Berkeley, pp 75–76

    Google Scholar 

  • Bohsung J, Trebin HR (1987) Disclinations in quasicrystals. Phys Rev Lett 58(21):2277–2280

    Article  Google Scholar 

  • Cass TR (1970) The science, technology and application of titanium. Pengomn Press, New York, p 459

    Book  Google Scholar 

  • Conrad H, Okasaki K, Gadgil V, Jon M (1972) Dislocation structure and the strength of titanium. In: Thomas G, Fulrath RM, Fisher RM (eds) Electron microscopy and structure of materials. University of California Press, Berkeley, pp 438–469

    Google Scholar 

  • Cottrell AH (1953) Dislocations and plastic flow in crystals. Clarendon, Oxford, UK

    Google Scholar 

  • Frank FC (1950) Symposium on plastic deformation of crystalline solids. Carnegie Institute of Technology, Pittsburgh, p 89

    Google Scholar 

  • Frank FC (1958) On the theory of liquid crystals. Discuss Faraday Soc 25:19–25

    Article  Google Scholar 

  • Frank FC, Read WT (1950a) Symposium on plastic deformation of crystalline solids. Carnegie Institute of Technology, Pittsburgh, p 44

    Google Scholar 

  • Frank FC, Read WT (1950b) Multiplication processes for slow moving dislocations. Phys Rev 79:722–730

    Article  Google Scholar 

  • Gilman JJ (1969) Micromechanics of flow in solids. McGraw-Hill, New York

    Google Scholar 

  • Gilman JJ, Johnston WG (1962) Dislocations in lithium fluoride crystals. In: Seitz F, Turnbull D (eds) Solid state physics, vol 13. Academic, New York, pp 148–222

    Google Scholar 

  • Gilman JJ, Johnston WG, Sears GW (1958) Dislocation etch pit formation in lithium fluoride. J Appl Phys 29(5):747–754

    Article  Google Scholar 

  • Hirth JP (1963) Relation between structure and strength in metals and alloys. H.M. Stationery Office, London, p 218

    Google Scholar 

  • Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New York

    Google Scholar 

  • Kim P (2010) Across the border. Nat Mater 9:792–793

    Article  Google Scholar 

  • Koehler JS (1952) The nature of work hardening. Phys Rev 86:52–58

    Article  Google Scholar 

  • Leung PW, Henley CC, Chester GV (1989) Decagonal order in a two-dimensional Leonard-Jones System. Phys Rev B 39(1):446–459

    Article  Google Scholar 

  • Li JCM (1963) Petch relation and grain boundary sources. Trans TMS-AIME 227:239–247

    Google Scholar 

  • Li JCM, Chou YT (1970) The role of dislocations in the flow stress grain size relationships. Metall Trans 1:1145–1150

    Google Scholar 

  • Marcinkowski MJ (1972) Dislocation behavior and contrast effects associated with grain boundaries and related internal boundaries. In: Thomas G, Fulrath RM, Fisher RM (eds) Electron microscopy and structure of materials. University of California Press, Berkeley pp 383–416

    Google Scholar 

  • Murr LE (1975a) Interfacial phenomena in metals and alloys. Addition–Wesley, Reading

    Google Scholar 

  • Murr LE (1975b) Some observation of grain boundary ledges and ledges as dislocation sources in metals and alloys. Metall Trans A 6A:505–513

    Article  Google Scholar 

  • Murr LE, Foltz JV (1970) Anatomy of a bullet hole. J Mater Sci 5:63–72

    Article  Google Scholar 

  • Murr LE, Wang S-H (1982) Comparison of microstructural evolution associated with the stress–strain diagram for nickel and 304 stainless steel: an electron microscope study of microyielding and plastic flow. Res Mech 4:237–274

    Google Scholar 

  • Murr LE, Horylev RJ, Lin WN (1970) Interfacial energy and structure in fcc metals and alloys. Philos Mag 22(177):515–542

    Article  Google Scholar 

  • Nabarro FRN (1967) Theory of crystal dislocations. Clarendon, Oxford, UK

    Google Scholar 

  • Nabarro FRN (1969) Dislocations in a simple cubic lattice, In: Argon AS (ed) Physics of strength and plasticity. The MIT Press, Cambridge, MA, p 97

    Google Scholar 

  • Romonov AE, Kolesnikova AC (2009) Application of dislocation concept to solid structures. Prog Mater Sci 54:740–769

    Article  Google Scholar 

  • Volterra V (1907) Sur l’equilibre des corps elastiques multiplement connexes. Ann Ecole Norm Super 24:400

    Google Scholar 

  • Weertman J, Weertman JR (1992) Elementary dislocation theory. Oxford University Press, Oxford, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence E. Murr .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Murr, L.E. (2015). Line Defects: Dislocations in Crystalline Materials. In: Handbook of Materials Structures, Properties, Processing and Performance. Springer, Cham. https://doi.org/10.1007/978-3-319-01815-7_15

Download citation

Publish with us

Policies and ethics