Skip to main content

Medium Access Control Protocols in Cognitive Radio Networks

  • Chapter
  • First Online:
Cognitive Radio and Networking for Heterogeneous Wireless Networks

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

The endeavor of categorizing the existing Cognitive-MAC (C-MAC) protocols requires definition of general classification frameworks or layouts that merge most of the aspects of the protocols in a single unified presentation. This chapter introduces the C-MAC cycle as a general classification and systematization layout for C-MAC protocols. The C-MAC cycle originates form the idea that the MAC layer in spectrally heterogeneous environments should provide support for three generic technical features: radio environmental data acquisition; spectrum sharing; and control channel management. The inclusion of these generic technical features is necessary in Cognitive Radio Networks (CRNs) for improving the network performance and achieving spectrum efficiency gain while providing maximal level of protection for the primary system. This chapter presents extensive survey on the state-of-art advances in C-MAC protocol engineering by reviewing existing technical solutions and proposals, identifying their basic characteristics and placing them into the C-MAC cycle, with emphasis on the modularity of the C-MAC cycle. It provides overview of large number of technical details concerning the three generic functionalities (i.e. the radio environmental data acquisition, the spectrum sharing and the control channel management) as the main building blocks of the C-MAC cycle. Three uses cases (each in different generic functional group), illustrate the capabilities of the proposed C-MAC cycle layout. In more detail, the first use case theoretically presents and practically evaluates cooperative spectrum sensing based on Estimated Noise Power. The results illustrate the effect of estimating the noise variance on the detection capabilities of the Majority Voting and Equal Gain Combining cooperative spectrum sensing strategies. The second use case presents advanced and computationally efficient horizontal spectrum sharing strategy for secondary systems based on Node Clustering and Beamforming. Finally, the last use case presents and assesses a multiuser quorum-based multiple rendezvous strategy for control channel establishment in distributed Cognitive Radio Networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitola, J.: Cognitive radio for flexible mobile multimedia communication. Paper Presented at 1999 IEEE International Workshop on Mobile Multimedia Communications, San Diego, Nov 1999

    Google Scholar 

  2. Standard for Recommended Practice for Installation and Deployment of IEEE 802.22 Systems, Official IEEE Standard, 28 Sept 2012

    Google Scholar 

  3. IEEE 802.11af Standard for Wireless LAN in TV White Space. http://grouper.ieee.org/groups/802/11/Reports/tgaf_update.htm. Accessed 20 Dec 2013

  4. EC FP7-248303 project QUASAR. http://www.quasarspectrum.eu/. Accessed 20 Dec 2013

  5. EC FP7-216856 project ARAGORN. http://www.ict-aragorn.eu/. Accessed 20 Dec 2013

  6. EC FP7-248351 project FARAMIR. http://www.ict-faramir.eu/. Accessed 20 Dec 2013

  7. EC FP7-257626 project ACROPOLIS. http://www.ict-acropolis.eu/. Accessed 20 Dec 2013

  8. Gavrilovska, L., et al.: Medium access control protocols in cognitive radio newtorks: overview and general classification. IEEE Commun. Surv. Tutor. Accepted 2014

    Google Scholar 

  9. Walke, B.H., et al.: IEEE 802 Wireless Systems: Protocols, Multi-Hop Mesh/Relaying, Performance and Spectrum Coexistence. Chichester, West Sussex, England (2006)

    Book  Google Scholar 

  10. Krishna, T.V., Das, A.: A survey on MAC protocols in OSA networks. Comput. Netw. J. (Elsevier) 53(9), 1377–1394 (2009)

    Google Scholar 

  11. Domenico, A.D., et al.: (2012) A Survey on MAC Strategies for Cognitive Radio Networks. IEEE Commun. Surv. Tutor. 14(1), 21–44

    Article  Google Scholar 

  12. Ren, P., et al.: A survey on dynamic spectrum access protocols for distributed cognitive wireless networks. EURASIP J. Wirel. Commun. Netw. 60 (2012). doi:10.1186/1687-1499-2012-60

  13. Cormio, C., Chowdhury, K.R.: A survey on MAC protocols for cognitive radio networks. Ad Hoc Netw. J. (Elsevier) 7(7), 1315–1329 (2009)

    Google Scholar 

  14. Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio application. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009)

    Article  Google Scholar 

  15. Denkovski, D., et al.: HOS based goodness-of-fit testing signal detection. IEEE Commun. Lett. 16(3), 310–313 (2012)

    Article  Google Scholar 

  16. Akyildiz, I.F., et al.: Cooperative spectrum sensing in cognitive radio networks: a survey. Elsevier Phys. Commun. J. 4(1), 40–62 (2011)

    Article  Google Scholar 

  17. Aziz, A.M., et al.: A new soft-fusion approach for multiple-receiver wireless communication systems. ETRI J. 33(3), 310–319 (2011)

    Article  Google Scholar 

  18. Ciuonzo, D. et al.: Decision fusion in MIMO wireless sensor networks with channel state information. Paper Presented at 2012 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken, June 2012

    Google Scholar 

  19. Cordeiro, C., et al.: Cognitive PHY and MAC layers for dynamic spectrum access and sharing of TV bands. Paper Presented at 2006 First International Workshop on Technology and Policy for Accessing Spectrum (TAPAS), Boston, Aug 2006

    Google Scholar 

  20. Khan, Z., et al.: Autonomous sensing order selection strategies exploiting channel access information. IEEE Trans. Mob. Comput. 12(2), 274–288 (2013)

    Article  Google Scholar 

  21. Peh, E., et al.: Optimization of cooperative sensing in cognitive radio networks: a sensing-throughput tradeoff view. IEEE Trans. Veh. Technol. 58(9), 5294–5299 (2009)

    Article  Google Scholar 

  22. Mehanna, O., et al.: Blind cognitive MAC protocols. Paper Presented at 2009 IEEE International Conference on Communications, Dresden, June 2009

    Google Scholar 

  23. Li, X., et al.: Optimal cognitive access of Markovian channels under tight collision constraints. IEEE J. Sel. Areas Commun. 29(4), 746–756 (2011)

    Article  Google Scholar 

  24. Zhang, Z., et al.: Channel exploration and exploitation with imperfect spectrum sensing in cognitive radio networks. IEEE J. Sel. Areas Commun. 31(3), 429–441 (2013)

    Article  Google Scholar 

  25. Pollin, S., et al.: A distributed multichannel MAC protocol for multihop cognitive radio networks. IEEE Trans. Veh. Technol. 59(1), 446–459 (2010)

    Article  Google Scholar 

  26. Kim, H., Shin, K.G.: Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Trans. Mob. Comput. 7(5), 533–545 (2008)

    Article  MathSciNet  Google Scholar 

  27. Su, H., Zhang, X.: Channel exploration and exploitation with imperfect spectrum sensing in cognitive radio networks. IEEE J. Sel. Areas Commun. 26(1), 118–129 (2008)

    Article  Google Scholar 

  28. Hu, D., Mao, S.: A sensing error aware MAC protocol for cognitive radio networks. ICST Trans. Mob. Commun. Appl. 12(2), e1 (2012). http://eudl.eu/doi/10.4108/mca.2012.07-09.e1

  29. Bkassiny, M., et al.: Optimal and low-complexity algorithms for dynamic spectrum access in centralized cognitive radio networks with fading channels. Paper Presented at 2011 IEEE Vehicular Technology Conference (VTC-Spring) 2011, Budapest, May 2011

    Google Scholar 

  30. Zhao, Q., et al.: On myopic sensing for multi-channel opportunistic access: structure, optimality, and performance. IEEE Trans. Wirel. Commun. 7(12), 5431–5440 (2008)

    Article  Google Scholar 

  31. Jia, J., et al.: HC-MAC: A Hardware-constrained cognitive MAC for efficient spectrum management. IEEE J. Sel. Areas Commun. 26(1), 106–117 (2008)

    Article  Google Scholar 

  32. Xia, W., et al.: Optimization of cooperative spectrum sensing in ad-hoc cognitive radio networks. Paper Presented at 2010 IEEE International Conference on Communications, Miami, Dec 2010

    Google Scholar 

  33. Karami, E., et al.: Cluster size optimization in cooperative spectrum sensing. Paper Presented at 2011 Ninth Annual Communication Networks and Services Research (CNSR) Conference, Ottawa, May 2011

    Google Scholar 

  34. Zhao, Y., et al.: Resource allocation in multiuser OFDM system based on ant colony optimization. Paper Presented at 2010 IEEE Wireless Communications and Networking Conference, Sidney, Apr 2010

    Google Scholar 

  35. Jiang, X., et al.: Cross-layer design of partial spectrum sharing for two licensed networks using cognitive radios. Wirel. Commun. Mob. Comput. (2013). doi:10.1002/wcm.2345

    Google Scholar 

  36. Li, F., et al.: Improved quantum genetic algorithm for competitive spectrum sharing in cognitive radios. Paper Presented at 2011 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, Nov 2011

    Google Scholar 

  37. Wang, Z., Zhang, W.: Spectrum sharing with limited channel feedback. IEEE Trans. Wirel. Commun. 12(5), 2524–2532 (2013)

    Article  Google Scholar 

  38. Tang, M., et al.: Nonconvex dynamic spectrum allocation for cognitive radio networks via particle swarm optimization and simulated annealing. J. Comput. Netw.: Int. J. Comput. Telecommun. Netw. 55(11), 2690–2699 (2012)

    Google Scholar 

  39. Tan, L.T., Le, L.B.: Distributed MAC protocol for cognitive radio networks: design, analysis, and optimization. IEEE Trans. Veh. Technol. 60(8), 3990–4003 (2010)

    Article  Google Scholar 

  40. Mahmoud, H., et al.: OFDM for cognitive radio: merits and challenges. IEEE Wirel. Commun. 16(2), 6–15 (2009)

    Article  Google Scholar 

  41. Wilcox, D., et al.: On spatial domain cognitive radio using single-radio parasitic antenna arrays. IEEE J. Sel. Areas Commun. 31(3), 571–580(2008)

    Google Scholar 

  42. Chavez-Santiago, R., et al.: Cognitive radio for medical body area networks using ultra wideband. IEEE Wirel. Commun. 19(4), 74–81 (2012)

    Article  Google Scholar 

  43. Kamruzzaman, S.M.: Dynamic TDMA slot reservation protocol for cognitive radio ad hoc networks. Paper Presented at 2010–13th International Conference on Computer and Information Technology (ICCIT), Dhaka, Dec 2010

    Google Scholar 

  44. Cheng, Z.: Cognitive radio based multiple access algorithm for differential frequency hopping network. Paper Presented at 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom), Beijing, Sept 2009

    Google Scholar 

  45. Yongwei, H., et al.: Robust multicast beamforming for spectrum sharing-based cognitive radios. IEEE Trans. Signal Process. 60(1), 527–533 (2012)

    Article  MathSciNet  Google Scholar 

  46. Tae, W.B.: Capacity and energy efficiency of multi-user spectrum sharing systems with opportunistic scheduling. IEEE Trans. Wirel. Commun. 8(6), 2836–2841 (2009)

    Article  Google Scholar 

  47. Khan, Z., et al.: Modeling the dynamics of coalition formation games for cooperative spectrum sharing in an interference channel. IEEE Trans. Comput. Intell. AI Games 3(1), 17–30 (2011)

    Article  Google Scholar 

  48. Christian, I., et al.: Spectrum mobility in cognitive radio networks. IEEE Commun. Mag. 50(6), 114–121 (2012)

    Article  Google Scholar 

  49. Feng, C., et al.: Cognitive learning-based spectrum handoff for cognitive radio network. Int. J. Comput. Commun. Eng. 1(4), 350–353 (2012)

    Article  Google Scholar 

  50. Zhang, Z., et al.: Self-organization paradigms and optimization approaches for cognitive radio technologies: a survey. IEEE Wirel. Commun. 20(2), 36–42 (2013)

    Article  Google Scholar 

  51. Pawełczak, P., et al.: Performance analysis of multichannel medium access control algorithms for opportunistic spectrum access. IEEE Trans. Veh. Technol. 58(6), 3014–3031 (2009)

    Article  Google Scholar 

  52. Zhao, J., et al.: Distributed coordination in dynamic spectrum allocation networks. Paper Presented at 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySpan), Baltimore, Nov 2005

    Google Scholar 

  53. Liu, S., et al.: Cluster-based control channel allocation in opportunistic cognitive radio networks. IEEE Trans. Mob. Comput. 11(10), 1436–1449 (2012)

    Article  Google Scholar 

  54. Doerr, C., et al.: Dynamic control channel assignment in cognitive radio networks using swarm intelligence. Paper Presented at 2008 IEEE Global Communications Conference (GLOBECOM), New Orleans (2008)

    Google Scholar 

  55. Bian, K., et al.: Control channel establishment in cognitive radio networks using channel hopping. IEEE J. Sel. Areas Commun. 29(4), 689–703 (2011)

    Article  Google Scholar 

  56. Romaszko, S., et al.: Asynchronous rendezvous protocol for cognitive radio ad hoc networks. Lect. Notes Inst. Comput. Sci. Soc. Inf. Telecommun. Eng. 111, 135–148 (2013)

    Google Scholar 

  57. Masri, A.M., et al.: Common control channel allocation in cognitive radio networks through UWB communication. J. Commun. Netw. (JCN) 14(6), 710–718 (2013)

    Google Scholar 

  58. Federal Communications Commission (FCC). http://www.fcc.gov. Accessed 20 Dec 2013

  59. EC FP7-248303 project QUASAR (2013) Deliverable 4.2. http://quasarspectrum.eu/images/stories/Documents/deliverables/QUASAR_D4.2.pdf. Accessed 20 Dec 2013

  60. Sonnenschein, A., Fishman, P.M.: Radiometric detection of spread-spectrum signals in noise of uncertain power. IEEE Trans. Aerosp. Electron. Syst. 28(3), 654–660 (1992)

    Article  Google Scholar 

  61. Torrieri, D.: The radiometer and its practical implementation. Paper Presented at 2010 IEEE Military Communications Conference (MILCOM), San Jose (2010)

    Google Scholar 

  62. Shen, B., et al.: Energy detection based spectrum sensing for cognitive radios in noise of uncertain power. Paper Presented at 2008 International Symposium on Communications and Information Technologies (ISCIT), Lao, Oct 2008

    Google Scholar 

  63. Mariani, A., et al.: Effects of noise power estimation on energy detection for cognitive radio applications. IEEE Trans. Commun. 59(12), 3410–3420

    Google Scholar 

  64. Rakovic, V., et al.: Cooperative spectrum sensing based on noise power estimation. In: International Symposium on Wireless Personal Multimedia Communications, Atlantic City, June 2013

    Google Scholar 

  65. Rakovic, V., et al.: Clustered network coordinated beamforming for cooperative spectrum sharing of multiple secondary systems. Paper Presented at 2011 International Conference on Cognitive Radio and Advanced Spectrum Management (CogART), Barcelona, Oct 2011

    Google Scholar 

  66. Chae, C.B., et al.: Network coordinated beamforming for cell-boundary users: linear and nonlinear approaches. IEEE J. Sel. Top. Signal Process. 3(6), 1094–1105 (2009)

    Article  MathSciNet  Google Scholar 

  67. Chae, C.B., et al.: Coordinated beamforming with limited feedback in the MIMO broadcast channel. IEEE J. Sel. Areas Commun. 26(8), 1505–1515 (2008)

    Article  Google Scholar 

  68. LTE; E-UTRA; UE radio transmission and reception. 3GPP technical specification 36.101

    Google Scholar 

  69. Erceg, V., et al.: TGn channel models. IEEE 802.11 document 802.11-03/940r4 (2004)

    Google Scholar 

  70. Pavlovska, V., et al.: Novel rendezvous protocol for asynchronous cognitive radios in cooperative environments. Paper Presented at 2010 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, pp. 26–30, Sept 2010

    Google Scholar 

  71. Jiang, J.R., et al.: Quorum-based asynchronous power-saving protocols for IEEE 802.11 ad hoc networks. J. Mob. Netw. Appl. 10(1/2), 169–181 (2005)

    Google Scholar 

  72. Maekawa, M.: A p N algorithm for mutual exclusion in decentralized systems. ACM Trans. Comput. Syst. 3(2), 145–159 (1985)

    Article  Google Scholar 

  73. Romaszko, S., Mähönen, P.: Quorum-based channel allocation with asymmetric channel view in cognitive radio networks. Paper Presented at 2011 6th ACM PM2HW2N Workshop (co-located with MSWiM’11), Miami (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liljana Gavrilovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gavrilovska, L., Denkovski, D., Rakovic, V., Angjelicinoski, M. (2015). Medium Access Control Protocols in Cognitive Radio Networks. In: Di Benedetto, MG., Cattoni, A., Fiorina, J., Bader, F., De Nardis, L. (eds) Cognitive Radio and Networking for Heterogeneous Wireless Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-01718-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01718-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01717-4

  • Online ISBN: 978-3-319-01718-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics