Skip to main content

Application of the Local Fractional Fourier Series to Fractal Signals

  • Chapter
  • First Online:
Discontinuity and Complexity in Nonlinear Physical Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 6))

Abstract

Local fractional Fourier series is a generalized Fourier series in fractal space. The local fractional calculus is one of useful tools to process the local fractional continuously non-differentiable functions (fractal functions). Based on the local fractional derivative and integration, the present chapter is devoted to the theory and applications of local fractional Fourier analysis in generalized Hilbert space. We recall the local fractional Fourier series, the Fourier transform, the generalized Fourier transform, the discrete Fourier transform and fast Fourier transform in fractal space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiener N (1933) The Fourier integral and certain of its applications. Cambridge University Press, Cambridge

    Google Scholar 

  2. KÖrener TW (1988) Fourier analysis. Cambridge University Press, Cambridge

    Google Scholar 

  3. Folland B (1992) Fourier analysis and its application. Wadsworth, California

    Google Scholar 

  4. Howell KB (2001) Principles of Fourier analysis. Chapman & Hall/CRC, New York

    Book  MATH  Google Scholar 

  5. Stein M, Weiss G (1971) Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton

    MATH  Google Scholar 

  6. Rudin W (1962) Fourier analysis on groups. Wiley, New York

    MATH  Google Scholar 

  7. Loomis L (1953) Abstract harmonic analysis. Van Nostrand, New York

    MATH  Google Scholar 

  8. Katznelson Y (1968) An introduction to harmonic analysis. Wiley, New York

    MATH  Google Scholar 

  9. Namias V (1980) The fractional order Fourier transform and its application to quantum mechanics. IMA J Appl Math 25:241–265

    Article  MathSciNet  MATH  Google Scholar 

  10. Mcbride AC, Kerr FH (1987) On Namias’s fractional Fourier transforms. IMA J Appl Math 39(2):159–175

    Article  MathSciNet  MATH  Google Scholar 

  11. Bailey DH, Swarztrauber PN (1991) The fractional Fourier transform and applications. SIAM Rev 33:389–404

    Article  MathSciNet  MATH  Google Scholar 

  12. Lohmann AW (1993) Image rotation, Wigner rotation and the fractional Fourier transform. J Opt Soc Am A 10:2181–2186

    Article  Google Scholar 

  13. Almeida LB (1994) The fractional Fourier transform and time-frequency representations. IEEE Trans Signal Process 42(11):3084–3091

    Article  Google Scholar 

  14. Candan C, Kutay MA, Ozaktas HM (2000) The discrete fractional Fourier transform. IEEE Trans Signal Process 48(5):1329–1337

    Article  MathSciNet  MATH  Google Scholar 

  15. Pei S-C, Ding J-J (2001) Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans Signal Process 49(8):1638–1655

    Article  MathSciNet  Google Scholar 

  16. Saxena R, Singh K (2005) Fractional Fourier transform: a novel tool for signal processing. J Indian Inst Sci 85:11–26

    Google Scholar 

  17. Tao R, Deng B, Zhang W-Q, Wang Y (2008) Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. IEEE Trans Signal Process 56(1):158–171

    Article  MathSciNet  Google Scholar 

  18. Bhandari A, Marziliano P (2010) Sampling and reconstruction of sparse signals in fractional Fourier domain. IEEE Signal Process Lett 17(3):221–224

    Article  Google Scholar 

  19. Kolwankar KM, Gangal AD (1996) Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 6(4):505–513

    Article  MathSciNet  MATH  Google Scholar 

  20. Parvate A, Gangal AD (2009) Calculus on fractal subsets of real line - I: formulation. Fractals 17(1):53–81

    Article  MathSciNet  MATH  Google Scholar 

  21. Adda FB, Cresson J (2001) About non-differentiable functions. J Math Anal Appl 263: 721–737

    Article  MathSciNet  MATH  Google Scholar 

  22. Carpinteri A, Chiaia B, Cornetti P (2001) Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput Methods Appl Mech Eng 191:3–19

    Article  MATH  Google Scholar 

  23. Carpinteri A, Cornetti P (2002) A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Solitons Fractals 13:85–94

    Article  MATH  Google Scholar 

  24. Babakhani A, Daftardar-Gejji V (2002) On calculus of local fractional derivatives. J Math Anal Appl 270(1):66–79

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen Y, Yan Y, Zhang K (2010) On the local fractional derivative. J Math Anal Appl 362:17–33

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen W (2006) Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 28:923–929

    Article  MATH  Google Scholar 

  27. Chen W, Sun HG, Zhang XD, Koro D (2010) Anomalous diffusion modeling by fractal and fractional derivatives. Comput Math Appl 59:1754–1758

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen W, Zhang XD, Korosak D (2010) Investigation on fractional and fractal derivative relaxation-oscillation models. Int J Nonlinear Sci Numer Simulat 11:3–9

    Google Scholar 

  29. Jumarie G (2005) On the representation of fractional Brownian motion as an integral with respect to (dt)a. Appl Math Lett 18:739–748

    Article  MathSciNet  MATH  Google Scholar 

  30. Jumarie G (2006) Lagrange characteristic method for solving a class of nonlinear partial differential equations of fractional order. Appl Math Lett 19:873–880

    Article  MathSciNet  MATH  Google Scholar 

  31. He JH (2011) A new fractal derivation. Therm Sci 15:S145–S147

    Google Scholar 

  32. Fan J, He JH (2012) Fractal derivative model for air permeability in hierarchic porous media. Abstr Appl Anal 2012:354701

    MathSciNet  Google Scholar 

  33. Li ZB, Zhu WH, He JH (2012) Exact solutions of time-fractional heat conduction equation by the fractional complex transform. Therm Sci 16(2):335–338

    Article  MathSciNet  Google Scholar 

  34. He JH, Elagan SK, Li ZB (2012) Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys Lett A 376:257–259

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang XJ (2009) Research on fractal mathematics and some applications in mechanics. M.S. thesis, China University of Mining and Technology

    Google Scholar 

  36. Yang XJ (2011) Local fractional integral transforms. Prog Nonlinear Sci 4:1–225

    Google Scholar 

  37. Yang XJ (2011) Local fractional functional analysis and its applications. Asian Academic publisher, Hong Kong

    Google Scholar 

  38. Yang XJ (2012) Advanced local fractional calculus and its applications. World Science Publisher, New York

    Google Scholar 

  39. Hu MS, Baleanu D, Yang XJ (2013) One-phase problems for discontinuous heat transfer in fractal media. Math Probl Eng 2013:358473

    MathSciNet  Google Scholar 

  40. Yang XJ, Baleanu D, Zhong WP (2013) Approximate solutions for diffusion equations on Cantor time-space. Proc Rom Acad A 14(2):127–133

    Google Scholar 

  41. Zhong WP, Yang XJ, Gao F (2013) A Cauchy problem for some local fractional abstract differential equation with fractal conditions. J Appl Funct Anal 8(1):92–99

    MathSciNet  MATH  Google Scholar 

  42. Yang XJ, Baleanu D (2013) Fractal heat conduction problem solved by local fractional variation iteration method. Therm Sci 17(2):625–628

    Google Scholar 

  43. Liao MK, Yang XJ, Yan Q (2013) A new viewpoint to Fourier analysis in fractal space. In: Anastassiou GA, Duman O (eds) Advances in applied mathematics and approximation theory, chapter 26. Springer, New York, pp 399–411

    Google Scholar 

  44. Hu MS, Agarwal RP, Yang XJ (2012) Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr Appl Anal 2012:567401

    MathSciNet  Google Scholar 

  45. He JH (2012) Asymptotic methods for solitary solutions and compactons. Abstr Appl Anal 2012:916793

    Google Scholar 

  46. Guo Y (2012) Local fractional Z transform in fractal space. Adv Digit Multimedia 1(2):96–102

    Google Scholar 

  47. Yang XJ, Liao MK, Chen JW (2012) A novel approach to processing fractal signals using the Yang–Fourier transforms. Procedia Eng 29:2950–2954

    Article  Google Scholar 

  48. Zhong WP, Gao F, Shen XM (2012) Applications of Yang–Fourier transform to local fractional equations with local fractional derivative and local fractional integral. Adv Mater Res 461: 306–310

    Article  Google Scholar 

  49. Yang XJ (2012) A generalized model for Yang–Fourier transforms in fractal space. Adv Intell Transport Syst 1(4):80–85

    Google Scholar 

  50. Yang XJ (2012) The discrete Yang–Fourier transforms in fractal space. Adv Electr Eng Syst 1(2):78–81

    Google Scholar 

  51. Yang XJ (2012) Fast Yang–Fourier transforms in fractal space. Adv Intell Transport Syst 1(1):25–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, XJ., Baleanu, D., Machado, J.A.T. (2014). Application of the Local Fractional Fourier Series to Fractal Signals. In: Machado, J., Baleanu, D., Luo, A. (eds) Discontinuity and Complexity in Nonlinear Physical Systems. Nonlinear Systems and Complexity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-01411-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01411-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01410-4

  • Online ISBN: 978-3-319-01411-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics