Skip to main content

Regulation in Biological Systems

  • Chapter
  • First Online:
Systems Biology

Abstract

Any processes which occur in thermodynamically open systems must be automatically regulated if they are to maintain a steady state. Note that there is an important difference between a steady state and a state of equilibrium, since in the latter case no spontaneity is possible. The need to maintain a steady state ensuring homeostasis is an essential concern in nature while negative feedback loop is the fundamental way to ensure that this goal is met. The regulatory system determines the interdependences between individual cells and the organism, subordinating the former to the latter. In trying to maintain homeostasis, the organism may temporarily upset the steady state conditions of its component cells, forcing them to perform work for the benefit of the organism. Adopting a systemic approach to the study of regulatory mechanisms explains the mutual dependencies which, taken together, form the foundation of life.

On a cellular level signals are usually transmitted via changes in concentrations of reaction substrates and products. This simple mechanism is made possible due to limited volume of each cell. Such signaling plays a key role in maintaining homeostasis and ensuring cellular activity. On the level of the organism signal transmission is performed by hormones and the nervous system. This work addresses the problems of regulation on a systemic level.

Maintaining a steady state in thermodynamically open systems requires regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas AK, Lichtman AH, Pober JS (1991) Cellular and molecular immunology. WB Saunders Company, USA

    Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Bonfini L, Miglaccio E, Pelicci G, Langfrancone L, Pelicci P-G (1996) Not all Shc’s road lead to Ras. Trends Biochem Sci 21:257–261

    Google Scholar 

  • Bornholdt S (2005) Less is more in modelling large genetic networks. Science 310:449–451

    Article  PubMed  CAS  Google Scholar 

  • Brandman O, Meyer T (2008) Feedback loops shape cellular signals in space and time. Science 322:390–395

    Article  PubMed  CAS  Google Scholar 

  • Constanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JLY, Toufighi K, Mostafavi S, Prinz J, Onge RPS, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin Z-Y, Liang W, Marback M, Paw J, SanLuis B-J, Shuteriqi E, Tong AHY, Dyk N van, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras A-C, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) T he genetic landscape of a cell. Science 327:425–431

    Article  Google Scholar 

  • Cooper GM (1997) The cell – a molecular approach. ASM Press, Washington D.C

    Google Scholar 

  • Latil P de (1953) La pensée artificielle. Ed. Gallimard, Paris

    Google Scholar 

  • Devlin TM (2006) Textbook of biochemistry with clinical correlations. Wiley-Liss

    Google Scholar 

  • Drewes G, Ebneth A, Mandelkow E-M (1998) MAPs, MAPKs and microtubule dynamics. Trends Biochem Sci 23:307–311

    Article  PubMed  CAS  Google Scholar 

  • Faux MC, Scott JD (1996) More on target with protein phosphorylation: conferring specificity by location. Trends Biochem Sci 21:312–315

    PubMed  CAS  Google Scholar 

  • Ferrell JE Jr (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opinion Chem Biol 6:140–148

    Google Scholar 

  • Fields S, Johnston M (2005) Whither model organism research? Science 307:1885–1888

    Article  PubMed  CAS  Google Scholar 

  • Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296:750–752

    Article  PubMed  CAS  Google Scholar 

  • Freyre-Gonzalez JA, Trevino-Quintanilla LG (2010) Analyzing regulatory networks in bacteria. Nature Education 3(9):24–28

    Google Scholar 

  • Ganesan A, Zhang J (2012) How cells process information: quantification of spatiotemporal signaling dynamics. Protein sci 21:918–928.

    Google Scholar 

  • Glaser R (2002) Biophysics. Springer

    Google Scholar 

  • Guimerà R, Amarai LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900

    Article  PubMed  Google Scholar 

  • Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420:224–230

    Article  PubMed  CAS  Google Scholar 

  • Hernández AR, Klein AM, Kirschner MW (2012) Kinetic responses of β-catenin specify the sites of Wnt control. Science 338:1337–1340

    Article  PubMed  Google Scholar 

  • Hickman JA, Dive C (1999) Apoptosis and cancer chemotherapy. Humana Press, Totowa

    Book  Google Scholar 

  • Hodges A (2012) Beyond Turing’s machines. Science 336:163–164

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Mason SP, Barabasz A-L, Oltvai ZN (2001) Lethality and centralisty In protein networks. Nature 411:41

    Article  PubMed  CAS  Google Scholar 

  • Junker BH, Schreiber F (2008) Analysis of biological network. Willey-Interscience

    Google Scholar 

  • Koonin EV, Wolf YI, Karev GP (2002) The structure of the protein universe and genome evolution. Nature 420:218–223

    Article  PubMed  CAS  Google Scholar 

  • Kühner S, Noort V van, Betts MJ, Leo-Macias A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P, Castaño-Diez, Chen W-H, Devos D, Güell M, Norambuena T, Racke I, Rybin V, Schmidt A, Yus E, Aebersold R, Herrmann R, Böttcher B, Frangakis AS, Russell RB, Serrano L, Bork P, Gavin A-C (2009) Proteome organization in a genome-reduced bacterium. Science 326:1235–1240

    Article  PubMed  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (1997) Principles of biochemistry. Worth publishers, New York

    Google Scholar 

  • Lisman JEA (1985) Mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci USA 82:3055–3057

    Article  PubMed  CAS  Google Scholar 

  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain P-O, Han J-DJ, Chesneau A, Hao T, Goldberg DS, Ning L, Martinez M, Rual J-F, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Heuvel S van den, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  PubMed  CAS  Google Scholar 

  • Mayer B, Hemmens B (1997) Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22:477–481

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca+store: a view from the lumen. Trends Biochem Sci 23:10–14

    Article  PubMed  CAS  Google Scholar 

  • Mitchell L, Chang G, Horton NC, Kercher MA, Pace HC, Schumacher MA, Brennan R, Lu GP (1996) Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271:1247–1254

    Article  Google Scholar 

  • Mogilner A, Allard J, Wollman R (2012) Cell polarity: quantitative modeling as a tool in cell biology. Science 336:175–179

    Article  PubMed  CAS  Google Scholar 

  • Morrison RS, Kinoshita Y (2000) p73-Guilt by association? Science 289:257–258

    Article  PubMed  CAS  Google Scholar 

  • Murray RK, Harper HA (2000) Harper’s Biochemistry. Appleton & Lange.

    Google Scholar 

  • Nicholson WD, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  PubMed  CAS  Google Scholar 

  • Parhan P (2000) The immune system. Garland Publishing, New York

    Google Scholar 

  • Parry MAA, Zhang XC, Bode W (2000) Molecular mechanisms of plasminogen activation: bacterial cofactors provide clues. Trends Biochem Sci 25:53–59

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Development 14:1027–1047

    PubMed  CAS  Google Scholar 

  • Pines J (1999) Four-dimensional control of the cell cycle. Nat Cell Biol 1:E73–79

    Google Scholar 

  • Pozniak CD, Radinovic S, Yang A, McKeon F, Kaplan DR, Miller FD (2000) An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289:304–306

    Article  PubMed  CAS  Google Scholar 

  • Rivenbark AG, Strahl BD (2007) Unlocking cell fate. Science 318:403–404

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation at the single-cell level. Science 307:1962–1969

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Ahmadian MR, Wittinghofer A (1998) GTPase-activating proteins: helping hands to complement an active site. Trends Biochem Sci 23:257–262

    Article  PubMed  CAS  Google Scholar 

  • Scott JD, Pawson T (2000) Cell communication: the inside story. Sci Am 282(6):72–9

    Article  PubMed  CAS  Google Scholar 

  • Solomon EP, Berg LR, Martin DW, Villee CA (2000) Biologia Mulico-Oficyna. Wydawnicza, Warszawa

    Google Scholar 

  • Stein GS, Pardee AB (2004) Cell cycle and growth control. Wiley-Liss

    Google Scholar 

  • Stryer L (2002) Biochemistry. W. H. Freeman and Company, New York

    Google Scholar 

  • Takeda S, Grapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  PubMed  CAS  Google Scholar 

  • Thomas R, Kauffman M (2007) Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behaviour. Chaos 11:170–178

    Article  Google Scholar 

  • Tong AHY, Ewangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CWV, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2367

    Article  PubMed  CAS  Google Scholar 

  • Tong AHY, Lesage G, Bader GD, Ding H, Xu H XINX, Young J, Berriz GF, Brost RL, Chang M, Chen Y-Q, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphies C, He G, Hussein S, Ke L, Kogan N, Li Z, Levinson JN, Lu H, Ménard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Szicu A-M, Shapiro J, Sheikh B, Suter B, Wong SL, Hang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell GW, Andrews B, Bussey H, Borne C (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD (1997) Phosphoinositide-3 kinases: a conserved family of signal transducers. Trends Biochem Sci 22:267–272

    Article  PubMed  CAS  Google Scholar 

  • Voet D, Voet JG, Pratt CW (1999) Fundamentals of biochemistry. Wiley, New York

    Google Scholar 

  • Wall ME, Dunlop MJ, Hlavacek WS (2005) Multiple functions of a feed-forward-loop gene circuit. J Mol Biol 349:501–514

    Article  PubMed  CAS  Google Scholar 

  • Wallach D (1997) Cell death induction by TNF: a matter of self control. Trends Biochem Sci 22:107–109

    Article  PubMed  CAS  Google Scholar 

  • Wasyluk B, Hagman J, Gutierrez-Hartmann A (1998) Ets transcription factors: nuclear effectors of a Ras-MAP-kinase signaling pathway. Trends Biochem Sci 23:213–216

    Article  Google Scholar 

  • Weijland A, Parmeggiani A (1994) Why do two EF-Tu molecules act in the elongation cycle of protein biosynthesis? Trends Biochem Sci 19:188–193

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann N, Meisinger C, Pfanner N (2009) Connecting organelles. Science 325:403–404

    Article  PubMed  Google Scholar 

  • Wittinghofer A, Nassar N How RAS-related proteins talk to their effectors. Trends Biochem Sci 21:488–491

    Google Scholar 

  • Ye Y, Blaser G, Horrocks MH, Ruedas-Rama MJ, Ibrahim S, Zhukov AA, Orte A, Klenerman D, Jackson SE, Komander D (2012) Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 492:266–270

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Konieczny .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Konieczny, L., Roterman-Konieczna, I., Spólnik, P. (2014). Regulation in Biological Systems. In: Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-01336-7_4

Download citation

Publish with us

Policies and ethics