Skip to main content

Polymer with Intrinsic Microporosity Used as Explosive Vapour Sensors

  • Chapter
  • First Online:
Low Threshold Organic Semiconductor Lasers

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The compatibility of LED pumped OSLs makes them a new light source in various potential practical applications. An investigation of organic semiconductors for chemosensing nitro-aromatic compounds that are commonly used in explosives is presented in Chap. 7. A polymer of intrinsic micro-porosity (PIM-1) is of interest as its porous morphology, leading to high surface area, which can potentially enhance the penetration of explosive molecules, hence improving the sensitivity. By monitoring the photoluminescence and DFB laser emission, indication of the presence of 1,4-Dinitrobenzene (DNB) at a low vapour pressure is achieved. A significant enhancement in sensing efficiency and responsivity are established by using a DFB laser geometry. The microporous structures in PIM-1 make it a very promising material for rapid sensing of low-concentration explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence, J. R., Turnbull, G. A., & Samuel, I. D. W. (2002). Broadband optical amplifier based on a conjugated polymer. Applied Physics Letters, 80(17), 3036–3038.

    Article  ADS  Google Scholar 

  2. Amarasinghe, D., Ruseckas, A., Vasdekis, A. E., Turnbull, G. A., & Samuel, I. D. W. (2009). High-gain broadband solid-state optical amplifier using a semiconducting copolymer. Advanced Materials, 21(1), 107–110.

    Article  Google Scholar 

  3. Woggon, T., Klinkhammer, S., & Lemmer, U. (2010). Compact spectroscopy system based on tunable organic semiconductor lasers. Applied Physics B, 99(1–2), 47–51.

    Article  Google Scholar 

  4. Rose, A., Zhu, Z. G., Madigan, C. F., Swager, T. M., & Bulovic, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876–879.

    Article  ADS  Google Scholar 

  5. Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical sensors based on amplifying fluorescent conjugated polymers. Chemical Reviews, 107(4), 1339–1386.

    Article  Google Scholar 

  6. Germain, M. E., & Knapp, M. J. (2009). Optical explosives detection: From color changes to fluorescence turn-on. Chemical Society Reviews, 38(9), 2543–2555.

    Article  Google Scholar 

  7. Salinas, Y., Martinez-Manez, R., Marcos, M. D., Sancenon, F., Costero, A. M., Parra, M., et al. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews, 41(3), 1261–1296.

    Article  Google Scholar 

  8. Kercel, S. W., Burlage, R. S., Patek, D. R., Smith, C. M., Hibbs, A. D., & Rayner, T. J. (1997). Novel methods for detecting buried explosive devices. P Soc Photo-Opt Ins, 3079, 467–477.

    Google Scholar 

  9. Ewing, R. G., Atkinson, D. A., Eiceman, G. A., & Ewing, G. J. (2001). A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta, 54(3), 515–529.

    Article  Google Scholar 

  10. Moore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499–2512.

    Article  ADS  Google Scholar 

  11. Steinfeld, J. I., & Wormhoudt, J. (1998). Explosives detection: a challenge for physical chemistry. Annual Review of Physical Chemistry, 49, 203–232.

    Article  ADS  Google Scholar 

  12. WOODFIN, R. L.,(2007). Trace chemical sensing of explosives. wiley-Interscience: .

    Google Scholar 

  13. Schoon, A., & Berntsen, T. G. (2011). Evaluating the effect of early neurological stimulation on the development and training of mine detection dogs. Journal of Veterinary Behaviour, 6(2), 150–157.

    Article  Google Scholar 

  14. McLean, I. G. (2003). Mine Detection Dogs: Training, Operations and Odour Detection. Geneva: Geneva International Centre for Humanitarian Demining (GICHD).

    Google Scholar 

  15. Townsend, J. (2003). Pigs, a demining tool of the future? J. Journal of Mine Action, 7(3), 43.

    Google Scholar 

  16. Shaw, J. A., Seldomridge, N. L., Dunkle, D. L., Nugent, P. W., Spangler, L. H., Bromenshenk, J. J., et al. (2005). Polarization lidar measurements of honey bees in flight for locating land mines. Optics Express, 13(15), 5853–5863.

    Article  ADS  Google Scholar 

  17. Bromenshenk, J. J.; Henderson, C. B.; Seccomb, R. A.; Rice, S. D.; Etter, R. T.; Bender, S. F. A.; Rodacy, P. J.; Shaw, J. A.; Seldomridge, N. L.; Spangler, L. H.; Wilson, J. J. (2003). Can honey bees assist in area reduction and landmine detection? Journal of Mine Action, 7 (3).

    Google Scholar 

  18. Todd, M. W., Provencal, R. A., Owano, T. G., Paldus, B. A., Kachanov, A., Vodopyanov, K. L., et al. (2002). Application of mid-infrared cavity-ringdown ectroscopy to trace explosives vapor detection using a broadly tunable (6–8 mu m) optical parametric oscillator. Applied Physics B, 75(2–3), 367–376.

    Article  Google Scholar 

  19. Sylvia, J. M., Janni, J. A., Klein, J. D., & Spencer, K. M. (2000). Surface-enhanced Raman detection of 1,4-dinitrotoluene impurity vapor as a marker to locate landmines. Analytical Chemistry, 72(23), 5834–5840.

    Article  Google Scholar 

  20. Turk, A. S., & Hocaoglu, K. A. (1977). Vertiy. A. A.: Waley & Sons.

    Google Scholar 

  21. Yang, J. S., & Swager, T. M. (1998). Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. Journal of the American Chemical Society, 120(46), 11864–11873.

    Article  Google Scholar 

  22. Czarnik, A. W. (1998). A sense for landmines. Nature, 394(6692), 417–418.

    Article  ADS  Google Scholar 

  23. Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14–29.

    Article  Google Scholar 

  24. Richardson, S., Barcena, H. S., Turnbull, G. A., Burn, P. L., & Samuel, I. D. W. (2009). Chemosensing of 1, 4-dinitrobenzene using bisfluorene dendrimer distributed feedback lasers. Applied Physics Letters, 95(6), 063305.

    Article  ADS  Google Scholar 

  25. Yang, Y., Turnbull, G. A., & Samuel, I. D. W. (2010). Sensitive explosive vapor detection with polyfluorene lasers. Advanced Functional Materials, 20(13), 2093–2097.

    Article  Google Scholar 

  26. Wang, Y., Yang, Y., Turnbull, G. A., & Samuel, I. D. W. (2012). Explosive sensing using polymer lasers. Molecular Crystals and Liquid Crystals, 554, 103–110.

    Article  Google Scholar 

  27. Budd, P. M., Elabas, E. S., Ghanem, B. S., Makhseed, S., McKeown, N. B., Msayib, K. J., et al. (2004). Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity. Advanced Materials, 16(5), 456–458.

    Article  Google Scholar 

  28. Budd, P. M., Ghanem, B. S., Makhseed, S., McKeown, N. B., Msayib, K. J., & Tattershall, C. E. (2004). Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chemical Communications, 2, 230–231.

    Article  Google Scholar 

  29. McKeown, N. B., & Budd, P. M. (2010). Exploitation of intrinsic microporosity in polymer-based materials. Macromolecules, 43(12), 5163–5176.

    Article  ADS  Google Scholar 

  30. Budd, P. M., Msayib, K. J., Tattershall, C. E., Ghanem, B. S., Reynolds, K. J., McKeown, N. B., et al. (2005). Gas separation membranes from polymers of intrinsic microporosity. Journal of Membrane Science, 251(1–2), 263–269.

    Article  Google Scholar 

  31. Ghanem, B. S., McKeown, N. B., Budd, P. M., Selbie, J. D., & Fritsch, D. (2008). High-performance membranes from polyimides with intrinsic microporosity. Advanced Materials, 20(14), 2766.

    Article  Google Scholar 

  32. Budd, P. M., McKeown, N. B., Ghanem, B. S., Msayib, K. J., Fritsch, D., Starannikova, L., et al. (2008). Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1. Journal of Membrane Science, 325(2), 851–860.

    Article  Google Scholar 

  33. Rakow, N. A., Wendland, M. S., Trend, J. E., Poirier, R. J., Paolucci, D. M., Maki, S. P., et al. (2010). Visual Indicator for trace organic volatiles. Langmuir, 26(6), 3767–3770.

    Article  Google Scholar 

  34. Combes, D. J., Cox, T. I., Sage, I. C.(2010). Preconcentrator device incorporating a polymer of intrinsic microporosity. U.S. Patent 2010/0144049.

    Google Scholar 

  35. Wang, Y., McKeown, N. B., Msayib, K. J., Turnbull, G. A., & Samuel, I. D. W. (2011). Laser chemosensor with rapid responsivity and inherent memory based on a polymer of intrinsic microporosity. Sensors-Basel, 11(3), 2478–2487.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Y. (2014). Polymer with Intrinsic Microporosity Used as Explosive Vapour Sensors. In: Low Threshold Organic Semiconductor Lasers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01267-4_7

Download citation

Publish with us

Policies and ethics