Skip to main content

Multibody Systems

  • Chapter
  • First Online:
Dynamics of Underactuated Multibody Systems

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 205))

Abstract

In this chapter, the fundamentals of modeling and generation of the equation of motion using the Newton-Euler formalism is presented for rigid multibody systems. Its extension to flexible multibody systems using the floating frame of reference approach is also discussed. Thereby, the given presentation concentrates on a descriptive approach in order to derive the equation of motion in minimal form. This approach provides the equation of motion in symbolic or semi-symbolic form which is especially helpful for real-time simulations, optimizations and nonlinear control design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold M, Brüls O (2007) Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Sys Dyn 18:185–202

    Article  MATH  Google Scholar 

  2. Ascher U, Petzold L (1998) Computer methods for ordinary differential equations and differential-algebaric equations. SIAM, Philadelphia

    Book  Google Scholar 

  3. Bae DS, Haug E (1987) A recursive formulation for constrained mechanical system dynamics: Part I. open loop systems. Mech Struct Mach 15:359–382

    Article  Google Scholar 

  4. Bathe KJ (1996) Finite element procedures. Prentice Hall, Upper Saddle River

    Google Scholar 

  5. Bauchau OA (2011) Flexible multibody dynamics. Springer, Dordrecht

    Book  MATH  Google Scholar 

  6. Baumgarte J (1972) Stabilization of constraints and integrals of motion in dynamical systems. Comput Methods Appl Mech Eng 1:1–16

    Article  MathSciNet  MATH  Google Scholar 

  7. Bestle D (1994) Analyse und Optimierung von Mehrkörpersystemen. Springer, Berlin

    Book  Google Scholar 

  8. Bischop RB (ed) (2008) Mechatronic system control, logic, and data acquisition. CRC Press, Boca Raton

    Google Scholar 

  9. Bremer H (2008) Elastic multibody dynamics. Springer, Heidelberg

    Google Scholar 

  10. Brenan K, Campbell S, Petzold L (1996) Numerical solution of initial-value problems in differential-algebraic equations. SIAM, Philadelphia

    Google Scholar 

  11. De Luca A, Siciliano B (1993) Inversion-based nonlinear control of robot arms with flexible links. J Guidance Control Dynam 16(6):1169–1176

    Article  MATH  Google Scholar 

  12. Dietz S (1999) Vibration and fatigue analysis of vehicle systems using component modes. Fortschritts-Berichte VDI, Reihe 12, Nr. 401, VDI-Verlag, Düsseldorf

    Google Scholar 

  13. Eberhard P, Schiehlen W (2006) Computational dynamics of multibody systems: history, formalisms, and applications. J Comput Nonlinear Dynam 1:3–12

    Article  Google Scholar 

  14. Fehr J, Eberhard P (2010) Error-controlled model reduction in flexible multibody dynamics. J Comput Nonlinear Dynam 5:031005-1–031005-8

    Google Scholar 

  15. Fehr J, Eberhard P (2011) Simulation process of flexible multibody systems with non-modal order reduction techniques. Multibody Syst Dynam 25:313–334

    Article  MATH  Google Scholar 

  16. Géradin M (2001) Flexible multibody dynamics. Wiley, Chichester

    Google Scholar 

  17. Hahn W (1959) Theorie und Anwendung der direkten Methode von Ljapunov. Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete

    Book  MATH  Google Scholar 

  18. Hairer E, Wanner G (2010) Solving ordinary differential equations II-stiff and differential algebraic problems. Springer, Berlin

    MATH  Google Scholar 

  19. Hairer E, Nørsett S, Wanner G (2009) Solving ordinary differential equations I-nonstiff problems, 2nd edn. Springer, Berlin

    Google Scholar 

  20. Hussein B, Negrut D, Shabana A (2008) Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebaric equations. Nonlinear Dynam 54:283–296

    Article  MathSciNet  MATH  Google Scholar 

  21. Kane TR, Levinson DA (1983) Multibody dynamics. J Appl Mech 50:1071–1078

    Article  MATH  Google Scholar 

  22. Kielau G, Maißer P (2003) Nonholonomic multibody dynamics. Multibody Syst Dynam 9:213–236

    Google Scholar 

  23. Kreuzer E (1979) Symbolische Berechnung der Bewegungsgleichungen von Mehrkörpersystemen. Fortschritts-Bericht VDI, Reihe 11, Nr. 32, VDI Verlag, Düsseldorf

    Google Scholar 

  24. Kübler L, Eberhard P, Geisler J (2003) Flexible multibody systems with large deformation and nonlinear structural damping using absolute nodal coordinates. Nonlinear Dynam 34:31–52

    Article  MathSciNet  MATH  Google Scholar 

  25. Kurz T, Henninger C (2009) Program documentation to Neweul-M\(^2\). Institute of Engineering and Computational Mechanics, Stuttgart. http://www.itm.uni-stuttgart.de/research/neweul/neweulm2_en.php

  26. Kurz T, Eberhard P, Henninger C, Schiehlen W (2010) From Neweul to Neweul-M\(^2\): symbolical equations of motion for multibody system analysis and synthesis. Multibody Syst Dynam 24(1):25–41

    Article  MATH  Google Scholar 

  27. Lai WM, Rubin D, Krempl E (1993) Introduction to continuum mechanics. Pergamon Press, Oxford

    Google Scholar 

  28. Lehner M, Eberhard P (2006) On the use of moment-matching to build reduced order models in flexible multibody dynamics. Multibody Syst Dynam 16:191–211

    Article  MathSciNet  MATH  Google Scholar 

  29. Leister G, Bestle D (1992) Symbolic-numerical solution of multibody systems with closed loops. Veh Syst Dynam 21:129–142

    Article  Google Scholar 

  30. Leyendecker S, Marsen J, Oritz M (2008) Variational integrators for constraint dynamical systems. ZAMM J Appl Math Mech 88:677–708

    Article  MATH  Google Scholar 

  31. Nikravesh P (2008) Planar multibody dynamics. Taylor & Francis, Boca Raton

    MATH  Google Scholar 

  32. Pfeiffer F, Glocker C (1996) Multibody dynamics with unilateral contacts. Wiley, New York

    Book  MATH  Google Scholar 

  33. Reddy JN (2008) An introduction to continuum mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  34. Roberson R, Schertassek R (1988) Dynamics of multibody dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  35. Salimbahrami B, Lohmann B (2006) Order reduction of large scale second-order systems using krylov subspace methods. Linear Algebra Appl 415:385–405

    Article  MathSciNet  MATH  Google Scholar 

  36. Sastry S (1999) Nonlinear systems: analysis stability and control, interdisciplinary applied mathematics. Springer, New York

    Book  Google Scholar 

  37. Schiehlen W (1991) Computational aspects in multibody dynamics. Comput Methods Appl Mech Eng 90:569–582

    Article  Google Scholar 

  38. Schiehlen W (1997) Multibody system dynamics: roots and perspectives. Multibody Syst Dynam 1:149–188

    Google Scholar 

  39. Schiehlen W, Eberhard P (2012) Technische Dynamik - Modelle für Regelung und Simulation, 3rd edn. Vieweg+Teubner, Wiesbaden

    Google Scholar 

  40. Schiehlen W, Guse N, Seifried R (2006) Multibody dynamics in computational mechanics and engineering applications. Comput Methods Appl Mech Eng 195(41–43):5509–5522

    Article  MathSciNet  MATH  Google Scholar 

  41. Schwertassek R, Wallrapp O (1999) Dynamik flexibler Mehrkörpersysteme. Vieweg.

    Google Scholar 

  42. Schwertassek R, Wallrapp O, Shabana A (1999) Flexible multibody simulation and choice of shape functions. Nonlinear Dynam 20:361–380

    Article  MathSciNet  MATH  Google Scholar 

  43. Seifried R (2012) Lecture notes Flexible Mehrkörpersysteme. University of Stuttgart, Institute of Engineering and Computational Mechanics

    Google Scholar 

  44. Seifried R, Schiehlen W, Eberhard P (2010) The role of the coefficient of restitution on impact problems in multibody dynamics. Proc Inst Mech Eng Part K: J Multi-body Dynam 224:279–306

    Google Scholar 

  45. Shabana A (1997) Flexible multibody dynamics: review of past and recent developments. Multibody Syst Dynam 1:189–222

    Article  MathSciNet  MATH  Google Scholar 

  46. Shabana A (2005) Dynamics of multibody systems, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  47. Shabana A (2010) Computational dynamics, 3rd edn. Wiley, Chichester

    Book  MATH  Google Scholar 

  48. Simpack (2009) FEMBS, Reference Guide, Simpack Version 8.901b. Simpack AG, Gilching

    Google Scholar 

  49. Stoer J, Bulirsch R (2002) Introduction to numerical analysis, 3rd edn. Texts in applied mathematics, Springer, New York

    Google Scholar 

  50. Wallrapp O (1993) Standard input data of flexible members in multibody systems. In: Schiehlen W (ed) Adv Multibody Syst Dynam. Kluwer, Dordrecht

    Google Scholar 

  51. Wallrapp O (1994) Standardization of flexible body modeling in multibody system codes, part 1: definition of standard input data. Mech Struct Mach 22(3):283–304

    Article  MathSciNet  Google Scholar 

  52. Wallrapp O, Schwertassek R (1991) Representation of geometric stiffening in multibody system simulation. Int J Numer Methods Eng 32(8):1833–1850

    Article  MATH  Google Scholar 

  53. Wallrapp O, Wiedemann S (2003) Comparison of results in flexible multibody dynamics using various approaches. Nonlinear Dynam 34:189–206

    Article  MathSciNet  MATH  Google Scholar 

  54. Wasfy TM, Noor AK (2003) Computational strategies for flexible multibody systems. Appl Mech Rev 56(6):553–613

    Article  Google Scholar 

  55. Wehage RA, Haug EJ (1982) Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamical systems. J Mech Des 104:247–255

    Article  Google Scholar 

  56. Woernle C (2011) Mehrkörpersysteme: Eine Einführung in die Kinematik und Dynamik von Systemen starrer Körper. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Seifried .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seifried, R. (2014). Multibody Systems. In: Dynamics of Underactuated Multibody Systems. Solid Mechanics and Its Applications, vol 205. Springer, Cham. https://doi.org/10.1007/978-3-319-01228-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01228-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01227-8

  • Online ISBN: 978-3-319-01228-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics