Skip to main content

Bacterial and Fungal Degradation of Nitroglycrine

  • Chapter
  • First Online:
Biological Remediation of Explosive Residues

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1131 Accesses

Abstract

Nitroglycerin (NG) is also known as trinitroglycerine, glyceryl trinitrate or more formally: 1,2,3-trinitroxypropane. It is a heavy, colourless, oily, explosive liquid. Glycerol trinitrate (GTN) is a nitrate ester formed by the action of nitronium ions on the hydroxyl groups of glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accashian JV, Vinopal RT, Kim BJ, Smets BF (1998) Aerobic growth on nitroglycerin as the sole carbon, nitrogen, and energy source by a mixed bacteria culture. Appl Environ Microbiol 64:3300–3304

    Google Scholar 

  • Accashian JV, Smets BF, Kim BJ (2000) Aerobic biodegradation of nitroglycerin in a sequencing batch reactor. Water Environ Res 72(4):499–506

    Article  Google Scholar 

  • ADPA (1975) American defense preparedness association. Waste water treatment in the military explosives and propellant production industry, vol 3. Technical report 802872. Office of Research and Development, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Bhaumik S, Christodoulatos C, Korfiatis GP, Brodman BW (1997) Aerobic and anaerobic biodegradation of nitroglycerin in batch and packed bed bioreactors. Water Sci Technol 36:139–146

    Google Scholar 

  • Binks PR, French CE, Nicklin S, Bruce NC (1996) Degradation of pentaerythritol tetra nitrate by Enterobacter cloacae PB2. Appl Environ Microbiol 62:1214–1219

    Google Scholar 

  • Belhert DS, Knoke KL, Fox BG, Chambliss GH (1997) Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species. J Bacteriol 179:6912–6920

    Google Scholar 

  • Burrows WD, Rosenblatt DH, Mitchell WR, Parmer DL (1989) Organic explosives and related compounds: environmental and health considerations, AD-A210 554, US Army Biomedical Research and Development Laboratory, Fort Detrick, MD

    Google Scholar 

  • Christodoulatos C, Bhaumik S, Brodman BW (1997) Anaerobic biodegradation of nitroglycerin. Water Res 31:1462–1470

    Article  Google Scholar 

  • Cyplik P, Marecik R, Piotrowska-Cyplik A, Olejnik A, Drozdzynska A, Chrzanowski L (2012) Biological denitrification of high nitrate processing waste waters from explosives production plant. Water Air Soil Pollut 223(4):1791–1800

    Article  Google Scholar 

  • Dario A, Schroeder M, Nyanhongo GS, Englmayer G, Guebitz GM (2010) Development of a biodegradable ethylene glycol dinitrate-based explosive. J Hazard Mater 176:125–130

    Article  Google Scholar 

  • Ducrocq C, Claudine S, Lenfant M (1989) Bioconversion of glycerol trinitrate into mononitrates by Geotrichum candidum. FEMS Microbiol Lett 65:219–222

    Article  Google Scholar 

  • Ducrocq C, Servy C, Lenfant M (1990) Formation of glyceryl 2-mononitrate by regioselective bioconversion of glyceryl trinitrate efficiency of the filamentous fungus Phanerochaete chrysosporium. Biotechnol Appl Biochem 12:325–330

    Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  Google Scholar 

  • Ellis IHV, Hodgson JR, Hwang SW, Halpap LM, Helton DO (1978) Disposition and metabolism and Ames test of additional compounds. Progress report 6, no NTIS: PC AO3/MF-AO1. Midwest Research Institute, Kansas City

    Google Scholar 

  • Fitzpatrick TB, Amrhein N, Macheroux P (2003) Characterization of YqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 278:19891–19897

    Article  Google Scholar 

  • French CE, Nicklin S, Bruce NC (1996) Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. J Bacteriol 178:6623–6627

    Google Scholar 

  • Gilman AG, Rall TW, Nies AS, Taylor P (eds) (1990) The pharmacological basis of therapeutics, 8th edn. Pergamon Press, New York, pp 764–774

    Google Scholar 

  • Goel A, Kumar G, Payne GF, Dube SK (1997) Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin. Nat Biotechnol 15(2):174–177

    Article  Google Scholar 

  • Gorontzy T, Drzyzga O, Kahl MW, Bruns-Nagel D, Breitung J, von Loew E, Blotevogel KH (1994) Microbial degradation of explosives and related compounds. Crit Rev Microbiol 20:265–284

    Article  Google Scholar 

  • Hawari J, Baudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbialdegradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  Google Scholar 

  • Husserl J, Spain JC, Hughes JB (2010) Growth of Arthrobacter sp. strain JBH1 on nitroglycerin as the sole source of carbon and nitrogen. Appl Environ Microbiol 76(5):1689–1691

    Article  Google Scholar 

  • Kaplan DL (1990) Biotransformation pathways of hazardous energetic organics in composts. In: Kamely D, Chakabaity A, Omlan GS (eds) Advances in applied biotechnology 4: biotechnology and biodegradation. Portfolio Publishing Houston, USA, pp 154–181

    Google Scholar 

  • Klaassen CD (ed) (1996) Casarett and Doull’s toxicology: the basic science of poisons, 5th edn. McGraw-Hill, New York, p 524

    Google Scholar 

  • Logan RP (1953) Acid and explosive wastes. In: Rudolfs W (ed) Industrial wastes, their disposal and treatment. Reinhold Publishing Corp, New York, pp 232–254

    Google Scholar 

  • Marshall SJ, White GF (2001) Complete denitration of nitroglycerin by bacteria isolated from a wash water soakaway. Appl Environ Microbiol 67:2622–2626

    Article  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  Google Scholar 

  • Meng M, Sun WQ, Geelhaar LA, Kumar G, Patel AR, Payne GF, Speedie MK, Stacy JR (1995) Denitration of glycerol trinitrate by resting cells and cell extracts of Bacillus thuringiensis/cereus and Enterobacter agglomerans. Appl Environ Microbiol 61:2548–2553

    Google Scholar 

  • Oh S, Chan DK, Kim BJ, Chiu PC (2004) Reduction of nitroglycerin with elemental iron: pathway, kinetics, and mechanisms. Environ Sci Technol 38:3723–3730

    Article  Google Scholar 

  • Parrish FW (1977) Fungal transformation of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl Environ Microbial 34:232–233

    Google Scholar 

  • Pesari H, Grasso D (1993) Biodegradation of an inhibitory non growth substrate (nitroglycerin) in batch reactors. Biotechnol Bioeng 41:79–87

    Article  Google Scholar 

  • Podlipna R, Fialova Z, Vanek T (2010) Degradation of nitroesters by plant tissue cultures. J Hazard Mater 184(1–3):591–596

    Article  Google Scholar 

  • Rylott EL, Bruce NC (2008) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81

    Article  Google Scholar 

  • Saad R, Thiboutot S, Ampleman G, Dashan W, Hawari J (2010a) Degradation of trinitroglycerin (TNG) using zero-valent iron nanoparticles/nanosilica SBA-15 composite (ZVINs/SBA-15). Chemosphere 81(7):853–858

    Article  Google Scholar 

  • Saad R, Thiboutot S, Ampleman G, Dashan W, Hawari J (2010b) Sorptive removal of trinitroglycerin (TNG) from water using nanostructured silica-based materials. J Environ Qual 39(2):580–586

    Article  Google Scholar 

  • Samantha JM, Graham FW (2001) Complete denitration of nitroglycerin by bacteria isolated from a wash water soak away. Appl Environ Microbiol 67(6):2622–2626

    Article  Google Scholar 

  • Samantha SK, Chatterjee S, Maikap S, Maiti CK (2004) Ultrathin oxynitride films on strained SiGe layers by a three-step NO/O2/NO process. Solid-State Electronics 48:SS91-97

    Google Scholar 

  • Servent D, Ducrocq C, Henry Y, Guissani A, Lenfant M (1991) Nitroglycerin metabolism by Phanerochaete chrysosporium: evidence for nitric oxide and nitrite formation. Biochim Biophysica Acta 1074:320–325

    Article  Google Scholar 

  • Sharma A, Sundaram ST, Zhang YZ, Brodman BW (1995) Nitrocellulose degradation by co-cultures of Sclerotium rolfsii and Fusarium solani. J Ind Microbiol 15:1–4

    Article  Google Scholar 

  • Smets BF, Vinopal RT, Grasso D, Strevett KA, Kim BJ (1995) Nitroglycerin biodegradation: theoretical thermodynamic considerations. J Ener Mater 13:385–389

    Article  Google Scholar 

  • Smith JG (1986) Water quality criteria for nitroglycerin: final report. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Smith LL, Carrazza J, Wong K (1983) Treatment of wastewaters containing propellants and explosives. J Hazard Mater 7:303

    Article  Google Scholar 

  • Spain JC, Hughes JB, Knackmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. CRC Press LLC, Boca Raton

    Google Scholar 

  • Sundaram ST, Zhang YZ, Sharma A, Brodman BW (1997) Screening for the involvement of the hydroxyl radical in the biodegradation of glyceryl trinitrate by Penicillium corylophilium Dierckz. Waste Manag 17:437–441

    Article  Google Scholar 

  • Urbanski T (1965) Chemistry and technology of explosives. PWN-Polish Scientific Publishers, Warsaw

    Google Scholar 

  • US Army (1973) Natick research and development command, Natick. Twenty-second conferences on microbiological deterioration of military material. Technical Report 75-2-FSL. Food Sciences Laboratory. US Army Natick Research and Development Command, Natick, Mass

    Google Scholar 

  • US Army (1974) Natick research and development command, Natick. Twenty-third conferences on microbiological deterioration of military material. Technical Report 75-87-FSL. Food Sciences Laboratory, US Army Natick Research and Development Command, Natick, Mass

    Google Scholar 

  • USEPA (1992) US environmental protection agency. Drinking water heath advisory: munitions–trinitroglycerol (TNG). In: Roberts WC, Hartley WR (eds) USEPA office of drinking water health advisories. Lewis Publishers, Boca Raton

    Google Scholar 

  • Walker JE, Kaplan DL (1992) Biological degradation of explosives and chemical agents. US Army Natick Research, Development and Engineering Center, Natick, Massachusetts

    Google Scholar 

  • Weber RWS, Ridderbusch DC, Anke H (2002) 2,4,6- trinitrotoluene (TNT) tolerance and and biotransformation potential of microfungi isolated from TNT contaminated soils. Mycol Res 106:336–344

    Article  Google Scholar 

  • Wendt TM, Cornell JH, Kaplan AM (1978) Microbial degradation of glycerol nitrates. Appl Environ Microbiol 36:693–699

    Google Scholar 

  • White GF, Snape JR (1996) Bacterial biodegradation of nitrate esters. In Kaffka AV (ed.) Sea-dumped chemical weapons: aspects, problems and solutions, Kluwer Academic Press, Dordrecht, pp 145–156

    Google Scholar 

  • White GF, Snape JR, Niklin S (1993) Presented in the 9th international biodeterioration and biodegradation symposium. The University of Leeds, UK

    Google Scholar 

  • White GF, Snape JR, Nicklin S (1996a) Bacterial biodegradation of glycerol trinitrate. Int Biodeterior Biodegrad 38:77–82

    Article  Google Scholar 

  • White GF, Snape JR, Nicklin S (1996b) Biodegradation of glycerol trinitrate and pentaerythritol tetranitrate by Agrobacterium radiobacter. Appl Environ Microbiol 62:637–642

    Google Scholar 

  • Williams RE, Bruce NC (2000) The role of nitrate ester reductase enzymes in the biodegradation of explosives. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press LLC, Boca Raton, pp 161–184

    Google Scholar 

  • Ye J, Singh A, Ward OP (2004) Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics. World J Microbiol Biotechnol 20:117–135

    Article  Google Scholar 

  • Zhang YZ, Sundaram ST, Sharma A, Brodman BW (1997) Biodegradation of glyceryl trinitrate by Penicillium corylophilum Dierckx. Appl Environ Microbiol 63:1712–1714

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatia, D., Grewal, A., Rathi, M., Malik, D.K. (2014). Bacterial and Fungal Degradation of Nitroglycrine. In: Singh, S. (eds) Biological Remediation of Explosive Residues. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-01083-0_7

Download citation

Publish with us

Policies and ethics