Skip to main content

Graph-Based Analysis of Metal Cutting Parameters

  • Conference paper
  • First Online:
Advances in Sustainable and Competitive Manufacturing Systems

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

In this work, the interdependencies of different metal cutting parameters are examined. In order to ensure competitiveness in the field of manufacturing, the quality, productivity and costs of the work must be in optimal balance. The parameters affecting the end result of a metal cutting process form a complex web of interdependencies. In this work, graph-based modularity analysis is applied in order to impose a structure on the network of parameters. This allows the identification of the parameters that are to be used in more thorough examination of the individual cases. Combined with an understanding of the graph topology such as parameterized relationships between different factors, this enables powerful heuristic tools such as expert systems to be created.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available from https://gephi.org/.

  2. 2.

    Available from http://nodex1.codeplex.com/.

References

  1. Lutters D, ten Brinke E, Streppel AH, Kals HJJ (2000) Computer aided process planning for sheet metal based on information management. J Mater Process Technol 103:120–127

    Article  Google Scholar 

  2. Newness LB, Mileham AR, Hosseini-Nasab H (2007) On-screen real-time cost estimating. Int J Prod Res 45(7):1577–1594

    Article  Google Scholar 

  3. Cuirana J, Ferrer I, Gao JX (2006) Activity model and computer aided system for defining sheet metal process planning. J Mater Process Technol 173:213–222

    Article  Google Scholar 

  4. Hayes C (1996) P3: a process planner for manufacturability analysis. IEEE Trans Robot Autom 12(2)

    Google Scholar 

  5. Singh DKJ, Jebara C (2005) Feature-based design for process planning of machining processes with optimisation using genetic algorithms. Int J Prod Res 43(18):3855–3887

    Article  Google Scholar 

  6. Wang GG, Xie SQ (2005) Optimal process planning for a combined punch-and-laser cutting machine using ant colony optimization. Int J Prod Res 43(11):2195–2216

    Article  MathSciNet  Google Scholar 

  7. Lohtander M (2010) On the development of object functions and restrictions for shapes made with a turret punch press, Lappeenranta University of Technology

    Google Scholar 

  8. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: 3rd international AAAI conference on weblogs and social media, San Jose, CA, USA

    Google Scholar 

  9. Smith M, Schneiderman B, Milic-Frayling N, Rodrigues EM, Barash V, Dunne C, Capone T, Perer A, Gleave E (2009) Analyzing (social media) networks with Node XL. In: Proceedings of the 4th international conference on communities and technologies, State College, PA, USA

    Google Scholar 

  10. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 10:1000

    Google Scholar 

  11. Abburi NR, Dixit US (2006) A knowledge-based system for the prediction of surface roughness in turning process. Robot Comput Integr Manuf 22(4):363–372

    Article  Google Scholar 

  12. Huh K, Pak C (2003) Unmanned turning force control with selecting cutting conditions. In: IEEE American control conference, Denver, CO, USA

    Google Scholar 

  13. Karayel D (2009) Prediction and control of surface roughness in CNC lathe using artificial neural network. J Mater Process Technol 209:3125–3137

    Article  Google Scholar 

  14. Peng YH (2004) On the performance enhancement of self-tuning adaptive control for time-varying machining processes. Int J Adv Manuf Technol 24:395–403

    Article  Google Scholar 

  15. Srinivas J, Giri R, Yang S-H (2009) Optimization of multi-pass turning using particle swarm intelligence. Int J Adv Manuf Technol 40:56–66

    Article  Google Scholar 

  16. Ratava J, Rikkonen M, Ryynänen V, Leppänen J, Lindh T, Varis J, Sihvo I (2012) An adaptive fuzzy control system to maximize rough turning productivity and avoid the onset of instability. Int J Adv Manuf Technol 53(1):71–79

    Google Scholar 

  17. Ryynänen V, Ratava J, Lindh T, Rikkonen M, Sihvo I, Leppänen J, Varis J (2009) Chip control system for monitoring the breaking of chips and elimination of continuous chips in rough turning. Mechanika 4(78):57–62

    Google Scholar 

  18. Sharma VS, Sharma SK, Sharma AK (2006) Cutting tool wear estimation for turning. J Intell Manuf 19(1):99–108

    Article  Google Scholar 

  19. Yilmaz O, Görür G, Dereli T (2001) Computer aided selection of cutting parameters by using fuzzy logic. In: Proceedings of the international conference, 7th fuzzy days on computational intelligence, theory and applications, Dortmund, Germany

    Google Scholar 

  20. Saglam H, Yaldiz S, Unsacar F (2007) The effect of tool geometry and cutting speed on main cutting force and tool tip temperature. Mater Des 28(1):101–111

    Article  Google Scholar 

  21. Cui X, Zhao J, Dong Y (2012) The effects of cutting parameters on tool life and wear mechanisms of CBN tool in high-speed face milling of hardened steel. Int J Adv Manuf Technol

    Google Scholar 

  22. Bhattacharya A, Das S, Majumder P, Batish A (2009) Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA. Prod Eng 3(1):31–40

    Article  Google Scholar 

  23. Hamdan A, Sarhan AAD, Hamdi M (2012) An optimization method of the machining parameters in high-speed machining of stainless steel using coated carbide tool for best surface finish. Int J Adv Manuf Technol 58(1–4):81–91

    Article  Google Scholar 

  24. Navas VG, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf 61:48–57

    Article  Google Scholar 

  25. Kienzle O, Victor H (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugmaschinen. VDI-Z 94(11–12):155–171

    Google Scholar 

  26. da Silva MB, Wallbank J (1999) Cutting temperature: prediction and measurement methods—a review. J Mater Process Technol 88(1–3):195–202

    Article  Google Scholar 

  27. Astakhov VP (2007) Effects of the cutting feed, depth of cut, and workpiece (bore) diameter on the tool wear rate. Int J Adv Manuf Technol 34(7–8):631–640

    Article  Google Scholar 

  28. Bhushan RK (2013) Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J Cleaner Prod 39:242–254

    Article  Google Scholar 

  29. Kumar NS, Shetty A, Shetty A, Ananth K, Shetty H (2012) Effect of spindle speed and feed rate on surface roughness of carbon steels in CNC turning. Procedia Eng 38:691–697

    Article  Google Scholar 

  30. Aouici H, Yallese MA, Chaoui K, Mabrouki T, Rigal J-F (2012) Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization. Measurement 45(3):344–353

    Article  Google Scholar 

  31. Ong TS, Hinds BK (2003) The application of tool deflection knowledge in process planning to meet geometric tolerances. Int J Mach Tools Manuf 43(7):731–737

    Article  Google Scholar 

  32. Sivaraman V, Sankaran S, Vijayaraghavan L (2012) The effect of cutting parameters on cutting force during turning multiphase micro alloyed steel. Procedia CIRP 4:157–160

    Article  Google Scholar 

  33. Abhang LB, Hameedullah M (2010) Chip-tool interface temperature prediction model for turning process. Int J Eng Sci Technol 2(4):382–393

    Article  Google Scholar 

  34. Choudhury SK, Kishore KK (2000) Tool wear measurement in turning using force ratio. Int J Mach Tools Manuf 40(6):899–909

    Article  Google Scholar 

  35. Bartarya G, Choudhury SK (2012) Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel. Procedia CIRP 1:651–656

    Article  Google Scholar 

  36. Li K-M, Liang SY (2007) Modeling of cutting forces in near dry machining under tool wear effect. Int J Mach Tools Manuf 47(7–8):1292–1301

    Article  Google Scholar 

  37. Pavel R, Marinescu I, Deis M, Pillar J (2005) Effect of tool wear on surface finish for a case of continuous and interrupted hard turning. J Mater Process Technol 170(1–2):341–349

    Article  Google Scholar 

  38. Ghani MU, Abukhshim NA, Sheikh MA (2008) An investigation of heat partition and tool wear in hard turning of H13 tool steel with CBN cutting tools. Int J Adv Manuf Technol 39(9–10):874–888

    Article  Google Scholar 

  39. Xavior MA, Adithan M (2009) Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. J Mater Process Technol 209(2):900–909

    Article  Google Scholar 

  40. Vieira JM, Machado AR, Ezugwu EO (2001) Performance of cutting fluids during face milling of steels. J Mater Process Technol 116(2–3):244–251

    Article  Google Scholar 

  41. Jianxin D, Hui Z, Ze W, Yunsong L, Youqiang X, Shipeng L (2012) Unlubricated friction and wear behaviors of Al2O3/TiC ceramic cutting tool materials from high temperature tribological tests. Int J Refract Metal Hard Mater 35:17–26

    Article  Google Scholar 

  42. Guillemot N, Winter M, Souto-Lebel A, Lartigue C, Billardon R (2011) 3D heat transfer analysis for a hybrid approach to predict residual stresses after ball-end milling. Procedia Eng 19:125–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampsa Laakso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Laakso, S., Peltokorpi, J., Ratava, J., Lohtander, M., Varis, J. (2013). Graph-Based Analysis of Metal Cutting Parameters. In: Azevedo, A. (eds) Advances in Sustainable and Competitive Manufacturing Systems. Lecture Notes in Mechanical Engineering. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00557-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00557-7_52

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00556-0

  • Online ISBN: 978-3-319-00557-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics