Skip to main content

Beyond the Central Limit Theorem: Lévy Distributions

  • Chapter
Stochastic Processes
  • 4757 Accesses

Abstract

In this chapter we return to mathematical foundations and discuss the theory of stable distributions as an extension to the central limit theorem and the canonical representation of stable distributions. The solution of the one-dimensional Weierstrass random walk is presented in detail, including its fractal properties and super-diffusive behavior. Fractal time random walks and their relation to subdiffusive behavior are introduced next. Finally, we discuss the truncated Lévy flight which will be employed in Chap. 5 for the description of financial fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is not the only definition of a fractal dimension. There are other methods. However, provided certain mathematical premises, one can establish that all definitions agree with one another [66]. Here, we take this for granted and only mention the Hausdorff dimension, which is the most intuitive one.

  2. 2.

    Note that the terms ‘random flight’ and ‘random walk’ are sometimes used to distinguish a detail of the stochastic process. One speaks of a random flight if the process occurs in continuous space and consists of a sequence of independent displacements with random direction and magnitude (but finite second moment). On the other hand, if the displacements are restricted to a lattice, a random walk results. Usually, we do not make this distinction and laxly use random flights and random walks synonymously.

References

  1. F. Bardou, J.-P. Bouchaud, A. Aspect, C. Cohen-Tannoudji, Lévy Statistics and Laser Cooling (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  2. J.-P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  3. J.-P. Bouchaud, M. Potters, Theory of Financial Risk—From Data Analysis to Risk Management (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  4. L. Breiman, Probability (SIAM, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  5. W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron, The Langevin Equation (World Scientific, Singapore, 2005)

    Google Scholar 

  6. J. Des Cloizeaux, G. Jannink, Polymers in Solution—Their Modelling and Structure (Oxford University Press, Oxford, 1990)

    Google Scholar 

  7. W. Feller, An Introduction to Probability Theory and its Applications, vol. 2 (Wiley, New York, 1966)

    MATH  Google Scholar 

  8. M. Fuchs, The Kohlrausch law as a limit solution to mode coupling equations. J. Non-Cryst. Solids 172–174, 241 (1994)

    Article  Google Scholar 

  9. B.W. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Reading, 1954)

    MATH  Google Scholar 

  10. W. Götze, Aspects of structural glass transitions, in Liquids, Freezing and the Glass Transition, Part 1, ed. by J.P. Hansen, D. Levesque, J. Zinn-Justin (North-Holland, Amsterdam, 1990)

    Google Scholar 

  11. W. Götze, Complex Dynamics of Glass-Forming Liquids—A Mode-Coupling Theory (Oxford University Press, Oxford, 2009)

    MATH  Google Scholar 

  12. J.-F. Gouyet, Physics and Fractal Structures (Springer, Paris, 1995)

    Google Scholar 

  13. I.S. Gradshteyn, I.M. Ryzhik, A. Jeffrey (eds.), Table of Integrals, Series and Products (Academic Press, San Diego, 1994)

    MATH  Google Scholar 

  14. R. Hilfer (ed.), Applications of Fractional Calculus in Physics (World Scientific, Singapore, 1999)

    Google Scholar 

  15. R. Hilfer, Threefold introduction to fractional derivatives, in Anomalous Transport, ed. by R. Klages, G. Radons, I.M. Sokolov (VCH, Weinheim, 2008)

    Google Scholar 

  16. B.D. Hughes, E.W. Montroll, M.F. Shlesinger, Fractal random walks. J. Stat. Phys. 28, 111 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. Klafter, M.F. Shlesinger, G. Zumofen, Beyond Brownian motion. Phys. Today February, 33 (1996)

    Article  Google Scholar 

  18. I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 52, 1197 (1995)

    Article  ADS  Google Scholar 

  19. R. Kutner, Hierachical spatio-temporal coupling in fractional wanderings. (I) Continuous-time Weierstrass flights. Physica A 264, 84 (1999)

    Article  Google Scholar 

  20. R. Kutner, M. Regulski, Hierachical spatio-temporal coupling in fractional wanderings. (II) Diffusion phase diagram for Weierstrass walks. Physica A 264, 107 (1999)

    Article  Google Scholar 

  21. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983)

    Google Scholar 

  22. R.N. Mantegna, H.E. Stanley, Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73, 2946 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M.E. Shlesinger, Comment on ‘Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight’. Phys. Rev. Lett. 74, 4959 (1995)

    Article  ADS  Google Scholar 

  24. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. E.W. Montroll, J.T. Bendler, On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation. J. Stat. Phys. 34, 129 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. E.W. Montroll, M.F. Shlesinger, On the wonderful world of random walks, in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, ed. by J.L. Lebowitz, E.W. Montroll (Elsevier, Amsterdam, 1984)

    Google Scholar 

  27. E.W. Montroll, B.J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, ed. by E.W. Montroll, J.L. Lebowitz (North-Holland, Amsterdam, 1987)

    Google Scholar 

  28. C.-K. Peng, J. Mietus, J.M. Hausdorff, S. Havlin, H.E. Stanley, A.L. Goldberger, Long-Range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70, 1343 (1993)

    Article  ADS  Google Scholar 

  29. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes—The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  30. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, London, 2003)

    Google Scholar 

  31. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives—Theory and Applications (Gordon & Breach, New York, 1993)

    MATH  Google Scholar 

  32. M.F. Shlesinger, Fractal time in condensed matter. Annu. Rev. Phys. Chem. 39, 269 (1988)

    Article  ADS  Google Scholar 

  33. M.F. Shlesinger, B.D. Hughes, Analogs of renormalization group transformations in random processes. Physica A 109, 597 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  34. M.F. Shlesinger, G.M. Zaslavsky, U. Frisch (eds.), Lévy flights and related topics in physics (Springer, Berlin, 1995)

    MATH  Google Scholar 

  35. D. Sornette, Discrete scale invariance and complex dimensions. Phys. Rep. 297, 239 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  36. B.J. West, W. Deering, Fractal physiology for physicists: Lévy statistics. Phys. Rep. 246, 1 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paul, W., Baschnagel, J. (2013). Beyond the Central Limit Theorem: Lévy Distributions. In: Stochastic Processes. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00327-6_4

Download citation

Publish with us

Policies and ethics