Skip to main content

Mycobacterial Iron Acquisition Mechanisms

  • Chapter
  • First Online:
Iron Acquisition by the Genus Mycobacterium

Part of the book series: SpringerBriefs in Molecular Science ((SB BIOMETALS))

  • 745 Accesses

Abstract

In both pathogenic and saprophytic mycobacteria, many of the genes and systems required for high affinity iron acquisition have been identified, including siderophore production, uptake of ferric-siderophores, production of iron storage proteins, and uptake of heme. Production and function of iron uptake mechanisms is controlled by a regulatory protein. Possible low affinity acquisition through multiple function porins also has been described. In pathogenic mycobacteria, most of the high affinity systems appear necessary for maintenance of an infection. Greater definition of the functions of both the identified genes and genes yet to be discovered will refine our understanding of mycobacterial iron acquisition and the interplay between components of the iron systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wachtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  Google Scholar 

  2. Koch AL, Schmidt TM (1991) The first cellular bioenergetic process: primitive generation of a proton-motive force. J Mol Evol 33:297–304

    Article  PubMed  CAS  Google Scholar 

  3. Woese CR (1979) A proposal concerning the origin of life on planet earth. J Mol Evol 13:95–101

    Article  PubMed  CAS  Google Scholar 

  4. Outten FW, Theil EC (2009) Iron-based redox switches in biology. Antiox Redox Signal 11:1029–1046

    Article  CAS  Google Scholar 

  5. Daniel RM, Danson MJ (1995) Did primitive microorganisms use nonhem iron proteins in place of NAD/P? J Mol Evol 40:559–563

    Article  CAS  Google Scholar 

  6. Saraiva IH, Newman SK et al (2012) Functional characterization of the FoxE iron oxidoreductase from the photoferrotroth Rhodobacter ferrooxidans SW2. J Biol Chem 287:25541–25548

    Article  PubMed  CAS  Google Scholar 

  7. Widdel F, Schnell S et al (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836

    Article  CAS  Google Scholar 

  8. Grenfell JL, Rauer H et al (2010) Co-evolution of atmospheres, life, and climate. Astrobiol 10:77–88

    Article  CAS  Google Scholar 

  9. Hohmann-Marriot MF, Blankenship RD (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  Google Scholar 

  10. Trevors JT (2002) The subsurface origin of microbial life on Earth. Res Microbiol 153:487–491

    Article  PubMed  CAS  Google Scholar 

  11. Lankford CE (1973) Bacterial assimilation of iron. Crit Rev Microbiol 2:273–331

    Article  CAS  Google Scholar 

  12. Garner BL, Arceneaux JEL et al (2004) Temperature control of a 3, 4-dihydroxybenzoate (protocatechuate)-based siderophore in Bacillus anthracis. Curr Microbiol 49:89–94

    PubMed  CAS  Google Scholar 

  13. Adilakshmi T, Ayling PD et al (2000) Mutational analysis of a role for salicylic acid in iron metabolism of Mycobacterium smegmatis. J Bacteriol 182:264–271

    Article  PubMed  CAS  Google Scholar 

  14. Byers BR, Arceneaux JEL (1998) Micobial iron transport: iron acquisition by pathogenic microorganisms. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 35 Iron Transport and Storage in Microorganisms, Plants and Animals. Marcel Dekker, New York

    Google Scholar 

  15. Bullen JJ, Griffiths E (eds) (1999) Iron and infection: molecular, physiological and clinical aspects, 2nd edn. Wiley, Chichester

    Google Scholar 

  16. Cornelis P, Andrews SC (eds) (2010) Iron uptake and homeostasis in microorganisms. Caister Academic Press, Norfolk

    Google Scholar 

  17. Nairz N, Schroll A et al (2010) The struggle for iron-a metal at the host-pathogen interface. Cell Microbiol 12:1692–1702

    Article  Google Scholar 

  18. Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis 84:110–130

    Article  PubMed  Google Scholar 

  19. Ratledge C, Dover G (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941

    Article  PubMed  CAS  Google Scholar 

  20. Rodriguez M, Smith I (2003) Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Molec Microbiol 47:1485–1494

    Article  CAS  Google Scholar 

  21. Saha R, Saha N et al (2012) Microbial siderophores: a mini review. J Basic Microbiol 52:1–15

    Article  Google Scholar 

  22. De Voss JJ, Rutter K et al (1999) Iron acquisition and metabolism by mycobacteria. J Bacteriol 181:4443–4451

    PubMed  Google Scholar 

  23. De Voss JJ, Rutter K et al (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 97:1252–1257

    Article  PubMed  Google Scholar 

  24. Rodriguez GM (2006) Control of iron metabolism in Mycobacterium tuberculosis. Trends in Microbiol 14:320–327

    Article  CAS  Google Scholar 

  25. Gold B, Rodriguez GM et al (2001) The Mycobacterium tuberculosis IdeR is a dual function regulator that controls transcription of genes involved in iron acquisition, iron storage, and survival in macrophages. Mol Micro 42:851–865

    Article  CAS  Google Scholar 

  26. Schnappinger E, Vaskuil MI et al (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosome environment. J Exp Med 198:693–704

    Article  PubMed  CAS  Google Scholar 

  27. Siegrist MS, Unnikrishnan M et al (2009) Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci USA 106:18792–18797

    Article  PubMed  Google Scholar 

  28. Timm J, Post FA et al (2003) Differential expression of iron-, carbon- and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA 100:14321–14326

    Article  PubMed  CAS  Google Scholar 

  29. McMahon MD, Rush J et al (2012) Analyses of MbtB, MbtE, and MbtF suggest revisions to the mycobactin biotynthesis pathway in Mycobacterium tuberculosis. J Bacteriol 194:2809–2818

    Article  PubMed  CAS  Google Scholar 

  30. Fiss EH, Yu S, Jacobs WR Jr (1994) Identification of genes involved in sequestration of iron in mycobacteria: the ferric exochelin biosynthetic and uptake pathways. Mol Microbio 14:557–569

    Article  CAS  Google Scholar 

  31. Yu S, Fiss E, Jacobs WR Jr (1998) Analysis of the exochelin locus in Mycobacterium smegmatis: biosynsthesis genes have homology with genes of the peptide synthetase family. J Bacteriol 180:4676–4685

    PubMed  CAS  Google Scholar 

  32. Zhu W, Arceneaux JEL et al (1998) Exochelin genes in Mycobacterium smegmatis: identification of an ABC transporter and two non-ribosomal peptide synthetase genes. Mol Micobiol 29:629–639

    Article  CAS  Google Scholar 

  33. Rodriguez GM, Voskuil MI et al (2002) ideR, an essential gene in Mycobacterium tuberculosis: role of ideR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371–3381

    Article  PubMed  CAS  Google Scholar 

  34. LaMarca BBD, Zhu W et al (2004) Participation of fad and mbt genes in synthesis of mycobactin in Mycobacterium smegmatis. J Bacteriol 186:374–382

    Article  PubMed  CAS  Google Scholar 

  35. Gobin J, Horwitz MA (1996) Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the Mycobacterium tuberculosis cell wall. J Expt Med 183:1527–1532

    Article  CAS  Google Scholar 

  36. Rodriguez GM, Smith I (2006) Identification of an ABC transporter required for iron acquisition and virulence. J Bacteriol 188:424–430

    Article  PubMed  CAS  Google Scholar 

  37. Ryndak MB, Wang S et al (2010) The Mycobacterium tuberculosis high affinity iron importer, IrtA, contains an FAD-binding domain. J Bacteriol 192:861–869

    Article  PubMed  CAS  Google Scholar 

  38. Faranh A, Kumar S et al (2008) Mechnistic insights into a novel exporter-importer system of Mycobacterium tuberculosis unravel its role in trafficking of iron. PLoS One 3:e2087

    Article  Google Scholar 

  39. Santhanagipaken S, Rodgriguez GM (2011) Examining the role of Rv2895c (ViuB) in iron acquisition in Mycobacterium tuberculosis. Tuberculosis 92:60–62

    Google Scholar 

  40. Wells RM, Jones CM, Xi Z et al (2013) Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 9(1–14):e1003120

    Article  PubMed  CAS  Google Scholar 

  41. Chim N, Iniquez P et al (2010) Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J Mol Biol 395:595–608

    Article  PubMed  CAS  Google Scholar 

  42. Jones CM, Neiderweis M (2011) Mycobacterium tuberculosis can utilize heme as an iron source. J Bacteriol 193:1767–1770

    Article  PubMed  CAS  Google Scholar 

  43. Owens CP, Du J et al (2012) Characterization of heme ligation properties of Rv0203, a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake. Biochemistry 51:1518–1531

    Article  PubMed  CAS  Google Scholar 

  44. Deshpande RG, Khan MB et al (1997) Isolation of a contact-dependent hemolysin from Mycobacterium tuberculosis. M Med Microbiol 46:233–238

    Article  CAS  Google Scholar 

  45. Rindi L, Lari BN et al (2003) Most human isolates of Mycobacterium avium Mav-A and Mav-B are strong producers of hemolysin, a putative virulence factor. J Clin Microiol 41:5738–5740

    Article  CAS  Google Scholar 

  46. Matzanke BF, Böhnke R et al (1997) Iron uptake and intacellular metal transfer in mycobacteria mediated by xenosiderophores. Biometals 10:193–203

    Article  PubMed  CAS  Google Scholar 

  47. Reddy PV, Purl RV et al (2012) Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J Bacteriol 194:567–575

    Article  PubMed  CAS  Google Scholar 

  48. Pandey R, Rodriguez GM (2012) A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice. Infec Immun 80:3650–3659

    Article  CAS  Google Scholar 

  49. Jones CM, Neiderweis M (2010) Role of porins in iron uptake by Mycobacterium smegmatis. J Bacteriol 192:6411–6417

    Article  PubMed  CAS  Google Scholar 

  50. Evans SL, Arceneaux JEL et al (1986) Ferrous iron transport in Streptococcus mutans. J Bacteriol 168:1096–1099

    PubMed  CAS  Google Scholar 

  51. Homuth M, Valentin-Weigand P et al (1998) Identification and characterization of a novel extracellular ferric reductase from Mycobacterium paratuberculosis. Infect Immun 66:710–716

    PubMed  CAS  Google Scholar 

  52. Aranha H, Evans SL et al (1982) Effect of trace metals on growth of Streptococcus mutans in a teflon chemostat. Infect Immun 35:456–460

    PubMed  CAS  Google Scholar 

  53. Strachan RC, Aranha H et al (1982) Teflon chemostat for studies of trace metal metabolism in Streptococcus mutans and other bacteria. Appl Environ Microbiol 43:257–260

    PubMed  CAS  Google Scholar 

  54. McCarthy CM (1983) Continuous culture of Mycobacterium avium limited for ammonia. Amer Rev Respir Dis 127:193–197

    CAS  Google Scholar 

  55. Ojha A, Hatful GF (2007) The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol Microbiol 66:468–483

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rowe Byers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Byers, B.R. (2013). Mycobacterial Iron Acquisition Mechanisms. In: Byers, B. (eds) Iron Acquisition by the Genus Mycobacterium. SpringerBriefs in Molecular Science(). Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00303-0_3

Download citation

Publish with us

Policies and ethics