Skip to main content

Toward “Ghost Imaging” with Cosmic Ray Muons

  • Conference paper
  • First Online:
Frontiers of Fundamental Physics and Physics Education Research

Abstract

Optical ghost imaging is a remote imaging technique that exploits either the correlations between light beams/entangled photon pairs, or the Hanbury-Brown Twiss [1, 2] effect typical of chaotic light sources. Is it possible to implement ghost imaging with massive particles? The Extreme Energy Events (EEE) project [3] offers a platform for attempting to answer this question. Our analysis is based on the experimental data taken in L’Aquila by two distant EEE muon telescopes [4, 5]. Interestingly, muons from cosmic ray showers exhibit spatio-temporal correlations that offer the possibility to evaluate the feasibility of ghost imaging with massive particle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanbury-Brown R (1974) Intensity Interferometer. Taylor and Francis Ltd, London

    Google Scholar 

  2. Hanbury-Brown R, Twiss RQ (1956) Nature 177, 27 and 178, 1046.

    Google Scholar 

  3. Zichichi A (2005) La Scienza nelle Scuole, EEE-Extreme Energy Events, oral presentation at Congresso Nazionale, Societa’ Italiana di Fisica (SIF). Bologna; also at www.centrofermi.it/eee.

    Google Scholar 

  4. Abbrescia M et al (2008) Nucl Instrum Methods A 593:263

    Article  ADS  Google Scholar 

  5. Abbrescia M et al. (2008) Proceedings of the Cosmic Ray International Seminar (CRIS), Malfa, September 15–19; to be published in Nucl Phys B.

    Google Scholar 

  6. Belinskii AV, Klyshko DN (1994) JETP 105:487

    Google Scholar 

  7. Klyshko DN (1988) Sov Phys Usp 31:74

    Article  ADS  Google Scholar 

  8. Pittman TB, Shih YH, Strekalov DV, Sergienko AV (1995) Phys Rev A 52:R3429

    Article  ADS  Google Scholar 

  9. Gatti A et al (2004) Phys Rev A 70:013802

    Article  ADS  Google Scholar 

  10. Valencia A, Scarcelli G, D’Angelo M, Shih Y (2005) Phys Rev Lett 94:063601

    Article  ADS  Google Scholar 

  11. Meyers R et al (2008) Phys Rev A 77:041801

    Article  ADS  Google Scholar 

  12. Scarcelli G (2009) Nat Phys 5:252

    Article  Google Scholar 

  13. Brida G, Genovese M, Ruo Berchera I (2010) Nat Photon 4:227.

    Google Scholar 

  14. Akindinov A et al (2000) Nucl Instrum Methods A 456:16

    Article  ADS  Google Scholar 

  15. Abbrescia M et al. (2010) Il Nuovo Cimento 125 B:243.

    Google Scholar 

  16. Regano A et al. (2009) oral presentation at XCV Congresso Nazionale, Societa’ Italiana di Fisica (SIF). Bari.

    Google Scholar 

  17. D’Angelo M, Kim YH, Kulik SP, Shih YH (2004) Phys Rev Lett 92:233601

    Article  ADS  Google Scholar 

  18. D’Angelo M, Valencia A, Rubin MH, Shih YH (2005) Phys Rev A 72:013810

    Article  ADS  Google Scholar 

  19. Bennink RS, Bentley SJ, Boyd RW, Howell JC (2004) Phys Rev Lett 92:033601

    Article  ADS  Google Scholar 

  20. Howell JC, Bennink RS, Bentley SJ, Boyd RW (2004) Phys Rev Lett 92:210403

    Article  ADS  Google Scholar 

  21. Bennink RS, Bentley SJ, Boyd RW (2002) Phys Rev Lett 89:113601

    Article  ADS  Google Scholar 

  22. Ferri F et al (2005) Phys Rev Lett 94:183602

    Article  ADS  Google Scholar 

  23. Zhang D et al (2005) Opt Lett 30:2354

    Article  ADS  Google Scholar 

  24. Scarcelli G, Berardi V, Shih Y (2006) Appl Phys Lett 88:061106

    Article  ADS  Google Scholar 

  25. Scarcelli G, Valencia A, Shih Y (2004) Europhys Lett 68:618

    Article  ADS  Google Scholar 

  26. D’Angelo M, Shih YH (2005) Laser Phys Lett 2:567

    Article  ADS  Google Scholar 

  27. Scarcelli G, Berardi V, Shih Y (2006) Phys Rev Lett 96:063602

    Article  ADS  Google Scholar 

  28. Klyshko DN (1988) Photon and Nonlinear Optics. Gordon and Breach Science, New York

    Google Scholar 

  29. Gatti A, Brambilla E, Lugiato LA (2003) Phys Rev Lett 90:133603

    Article  ADS  Google Scholar 

  30. Migdall A (1999) Phys Today 52:41

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

D’Angelo, M. et al. (2014). Toward “Ghost Imaging” with Cosmic Ray Muons. In: Sidharth, B., Michelini, M., Santi, L. (eds) Frontiers of Fundamental Physics and Physics Education Research. Springer Proceedings in Physics, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-319-00297-2_24

Download citation

Publish with us

Policies and ethics