Skip to main content

On the Parabolic Regime of a Hyperbolic Equation with Weak Dissipation: The Coercive Case

  • Conference paper
Progress in Partial Differential Equations

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 44))

  • 1227 Accesses

Abstract

We consider a family of Kirchhoff equations with a small parameter ε in front of the second-order time-derivative, and a dissipation term with a coefficient which tends to 0 as t→+∞.

It is well-known that, when the decay of the coefficient is slow enough, solutions behave as solutions of the corresponding parabolic equation, and in particular they decay to 0 as t→+∞.

In this paper we consider the nondegenerate and coercive case, and we prove optimal decay estimates for the hyperbolic problem, and optimal decay-error estimates for the difference between solutions of the hyperbolic and the parabolic problem. These estimates show a quite surprising fact: in the coercive case the analogy between parabolic equations and dissipative hyperbolic equations is weaker than in the noncoercive case.

This is actually a result for the corresponding linear equations with time-dependent coefficients. The nonlinear term comes into play only in the last step of the proof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chill, R., Haraux, A.: An optimal estimate for the time singular limit of an abstract wave equation. Funkc. Ekvacioj 47(2), 277–290 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ghisi, M.: Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations with weak dissipation. Adv. Differ. Equ. 17(1–2), 1–36 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Ghisi, M., Gobbino, M.: Global-in-time uniform convergence for linear hyperbolic-parabolic singular perturbations. Acta Math. Sin. Engl. Ser. 22(4), 1161–1170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ghisi, M., Gobbino, M.: Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: global-in-time error estimates. Commun. Pure Appl. Anal. 8(4), 1313–1332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghisi, M., Gobbino, M.: Hyperbolic-parabolic singular perturbation for Kirchhoff equations with weak dissipation. Rend. Ist. Mat. Univ. Trieste 42(Suppl.), 67–88 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Ghisi, M., Gobbino, M.: Hyperbolic-parabolic singular perturbation for nondegenerate Kirchhoff equations with critical weak dissipation. Math. Ann. 354, 1079–1102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghisi, M., Gobbino, M.: Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: decay-error estimates. J. Differ. Equ. 252(11), 6099–6132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ghisi, M., Gobbino, M.: Optimal decay-error estimates for the hyperbolic-parabolic singular perturbation of a degenerate nonlinear equation. J. Differ. Equ. 254(2), 911–932 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gobbino, M.: Quasilinear degenerate parabolic equations of Kirchhoff type. Math. Methods Appl. Sci. 22(5), 375–388 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hashimoto, H., Yamazaki, T.: Hyperbolic-parabolic singular perturbation for quasilinear equations of Kirchhoff type. J. Differ. Equ. 237(2), 491–525 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lions, J.L.: Perturbations Singuliéres dans les Problèmes aux Limites et en Control Optimal. Lecture Notes in Mathematics, vol. 323. Springer, Berlin (1973)

    Google Scholar 

  12. Wirth, J.: Wave equations with time-dependent dissipation. II. effective dissipation. J. Differ. Equ. 232(1), 74–103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wirth, J.: Scattering and modified scattering for abstract wave equations with time-dependent dissipation. Adv. Differ. Equ. 12(10), 1115–1133 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Yamazaki, T.: Asymptotic behavior for abstract wave equations with decaying dissipation. Adv. Differ. Equ. 11, 419–456 (2006)

    MATH  Google Scholar 

  15. Yamazaki, T.: Hyperbolic-parabolic singular perturbation for quasilinear equations of Kirchhoff type with weak dissipation. Math. Methods Appl. Sci. 32(15), 1893–1918 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yamazaki, T.: Hyperbolic-parabolic singular perturbation for quasilinear equations of Kirchhoff type with weak dissipation of critical power. Preprint

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Ghisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Ghisi, M., Gobbino, M. (2013). On the Parabolic Regime of a Hyperbolic Equation with Weak Dissipation: The Coercive Case. In: Reissig, M., Ruzhansky, M. (eds) Progress in Partial Differential Equations. Springer Proceedings in Mathematics & Statistics, vol 44. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00125-8_5

Download citation

Publish with us

Policies and ethics