Skip to main content

Inertial Confinement Fusion with Advanced Ignition Schemes: Fast Ignition and Shock Ignition

  • Chapter
  • First Online:
Laser-Plasma Interactions and Applications

Part of the book series: Scottish Graduate Series ((SGS))

Abstract

Essential ingredients of inertial confinement fusion (ICF) are fuel compression to very high density and hot spot ignition. In the conventional approach to ICF both fuel compression and hot spot formation are produced by the implosion of a suitable target driven by a time-tailored pulse of laser light or X-rays. This scheme requires an implosion velocity of 350–400 km/s. In advanced ignition schemes, instead, the stages of compression and hot spot heating are separated. First, implosion at somewhat smaller velocity produces a compressed fuel assembly. The hot spot is then generated by a separate mechanism in the pre-compressed fuel. The reduced implosion velocity relaxes issues concerning hydrodynamic instabilities, laser-plasma instabilities and preheat control. In addition, it can lead to higher target energy gain (ratio of fusion energy to driver energy). Fast ignition and shock ignition are promising advanced ignition schemes. In fast ignition the hot spot is created by either relativistic electrons or multi-MeV protons or light-ions, produced by a tightly focused ultra-intense laser beam. In shock ignition, intense laser pulses drive a converging shock wave that helps creating a hot spot at the centre of the fuel. These advanced schemes are illustrated in the present chapter. Motivation, potential advantages and issues are described. Research needs and perspective are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Clarendon, Oxford, 2004)

    Book  Google Scholar 

  2. J.D. Lindl, Phys. Plasmas 2, 3933 (1995)

    Article  ADS  Google Scholar 

  3. J.D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and High Gain Using Indirect Drive (Springer and AIP, New York, 1997)

    Google Scholar 

  4. J.W. Hogan (ed.), Energy from Inertial Fusion (International Atomic Energy Agency, Vienna, 1995)

    Google Scholar 

  5. M.E. Cuneo et al., Plasma Phys. Control. Fusion 48, R1 (2006)

    Article  ADS  Google Scholar 

  6. C. Olson et al., Fusion Sci. Technol. 47, 633 (2005)

    Google Scholar 

  7. B.G. Logan, L.J. Perkins, J.J. Barnard, Phys. Plasmas 15, 072701 (2008)

    Article  ADS  Google Scholar 

  8. J.H. Nuckolls, L. Wood, A. Thiessen, G.B. Zimmermann, Nature 239, 139 (1972)

    Article  ADS  Google Scholar 

  9. S.W. Haan et al., Phys. Plasmas 18, 051001 (2011)

    Article  ADS  Google Scholar 

  10. J.D. Lindl, E.I. Moses, Phys. Plasmas 18, 050901 (2011)

    Article  ADS  Google Scholar 

  11. G.H. Miller, E.I. Moses, C.R. Wuest, Nucl. Fusion 44, S228 (2004)

    Article  ADS  Google Scholar 

  12. L.J. Suter et al., Phys. Plasmas 7, 2092 (2000)

    Article  ADS  Google Scholar 

  13. M. Tabak et al., Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  14. R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)

    Article  ADS  Google Scholar 

  15. S.E. Bodner et al., Phys. Plasmas 7, 2298 (2000)

    Article  ADS  Google Scholar 

  16. S. Atzeni, Plasma Phys. Control. Fusion 51, 124029 (2009)

    Article  ADS  Google Scholar 

  17. M. Lafon, J. Ribeyre, G. Schurtz, Phys. Plasmas 17, 052704 (2010)

    Article  ADS  Google Scholar 

  18. M.C. Herrmann, M. Tabak, J.D. Lindl, Nucl. Fusion 41, 99 (2001)

    Article  ADS  Google Scholar 

  19. J.D. Lindl et al., Phys. Plasmas 11, 339 (2004)

    Article  ADS  Google Scholar 

  20. S.E. Bodner, J. Fusion Energy 1, 221 (1981)

    Article  ADS  Google Scholar 

  21. M.D. Rosen, Phys. Plasma 6, 1690 (1999)

    Article  ADS  Google Scholar 

  22. C. Garban-Labaune et al., Phys. Rev. Lett. 48, 1018 (1982)

    Article  ADS  Google Scholar 

  23. W.L. Kruer, The Physics of Laser Plasma Interactions (Addison Wesley, Redwood City, 1988)

    Google Scholar 

  24. Ya.B. Zel’dovich, Yu.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1967)

    Google Scholar 

  25. J. Meyer-ter-Vehn, C. Schalk, Z. Naturf. 37a, 955 (1982)

    Google Scholar 

  26. G.I. Taylor, Proc. R. Soc. (London) A201, 159 (1950)

    ADS  Google Scholar 

  27. K. Anderson, R. Betti, Phys. Plasmas 11, 5 (2004)

    Article  ADS  Google Scholar 

  28. V.N. Goncharov et al., Phys. Plasmas 10, 1906 (2003)

    Article  ADS  Google Scholar 

  29. R. Betti, C. Zhou, Phys. Plasmas 12, 110702 (2005)

    Article  ADS  Google Scholar 

  30. S. Atzeni, A. Schiavi, C. Bellei, Phys. Plasmas 14, 052702 (2007)

    Article  ADS  Google Scholar 

  31. X. Ribeyre et al., Plasma Phys. Control. Fusion 50, 025007 (2008)

    Article  ADS  Google Scholar 

  32. X. Ribeyre et al., Plasma Phys. Control. Fusion 51, 015013 (2009)

    Article  ADS  Google Scholar 

  33. S. Atzeni, A. Schiavi, A. Marocchino, Plasma Phys. Control. Fusion 53, 035010 (2011)

    Article  ADS  Google Scholar 

  34. S. Atzeni, Jpn. J. Appl. Phys. 34, 1980 (1995)

    Article  ADS  Google Scholar 

  35. J.D. Lawson, Proc. R. Soc. (London) 70, 6 (1957)

    ADS  Google Scholar 

  36. J. Wesson, Tokamaks, 3rd edn. (Clarendon, Oxford, 2003)

    Google Scholar 

  37. J. Meyer-ter-Vehn, Nucl. Fusion 22, 561 (1982)

    Article  Google Scholar 

  38. M.D. Rosen, J.D. Lindl, Laser Program Annual Report, Report UCRL-520021-83, 3.5 (1984)

    Google Scholar 

  39. S. Atzeni, Phys. Plasmas 6, 3316 (1999)

    Article  ADS  Google Scholar 

  40. J.C. Fernandez et al., Nucl. Fusion 49, 065004 (2009)

    Article  ADS  Google Scholar 

  41. S. Atzeni, M. Tabak, Plasma Phys. Control. Fusion 47, B769 (2005)

    Article  Google Scholar 

  42. M. Tabak et al., Fusion Sci. Technol. 49, 254 (2006)

    Google Scholar 

  43. D. Strickland, G. Mourou, Opt. Commun. 55, 447 (1985)

    Article  ADS  Google Scholar 

  44. M. Perry, G. Mourou, Science 264, 917 (1994)

    Article  ADS  Google Scholar 

  45. M.H. Key, Phys. Plasmas 14, 055502 (2007)

    Article  ADS  Google Scholar 

  46. E.M. Campbell, R.R. Freeman, K.A. Tanaka (guest editors), Fusion Sci. Technol. 49, 249 (2006)

    Google Scholar 

  47. J.R. Davies, Plasma Phys. Control. Fusion 51, 014006 (2009)

    Article  ADS  Google Scholar 

  48. P.M. Nilson et al., Phys. Rev. Lett 105, 235001 (2010)

    Article  ADS  Google Scholar 

  49. S.C. Wilks et al., Phys. Rev. Lett. 69, 1383 (1992)

    Article  ADS  Google Scholar 

  50. G. Malka, J.L. Miquel, Phys. Rev. Lett. 77, 75 (1996)

    Article  ADS  Google Scholar 

  51. J.S. Green et al., Phys. Rev. Lett. 100, 0150032 (2010)

    Google Scholar 

  52. F.N. Beg et al., Phys. Plasmas 4, 448 (1997)

    Article  ADS  Google Scholar 

  53. S.C. Wilks, W.L. Kruer, IEEE J. Quantum Electron. 33, 1954 (1997)

    Article  ADS  Google Scholar 

  54. B. Chrisman, Y. Sentoku, A.J. Kemp, Phys. Plasmas 15, 056309 (2008)

    Article  ADS  Google Scholar 

  55. R. Kodama et al., Nature 418, 933 (2002)

    Article  ADS  Google Scholar 

  56. H. Shiraga et al., Plasma Phys. Control. Fusion 53, 124029 (2011)

    Article  ADS  Google Scholar 

  57. S.P. Hatchett et al., Fusion Sci. Technol. 49, 327 (2006)

    Google Scholar 

  58. S. Atzeni, A. Schiavi, J.R. Davies, Plasma Phys. Control. Fusion 51, 015016 (2009)

    Article  ADS  Google Scholar 

  59. S. Atzeni et al., Phys. Plasmas 15, 056311 (2008)

    Article  ADS  Google Scholar 

  60. A. Debayle, J.J. Honrubia, E.D. D’Humieres, V.T. Tikhonchuk, Plasma Phys. Control. Fusion 53, 124024 (2011)

    Article  Google Scholar 

  61. J.J. Honrubia, J. Meyer-ter-Vehn, Plasma Phys. Control. Fusion 51, 014008 (2009)

    Article  ADS  Google Scholar 

  62. D.J. Strozzi et al., EPJ Web of Conf. Preprint: arXiv:1111.5089v1 (2012)

    Google Scholar 

  63. R.R. Freeman, Presentation at the National Academy Review on Prospects for Inertial Confinement Fusion Energy Systems (2011); fire.pppl.gov/IFE_NAS3_Fast_Ignite_Freeman.pdf

  64. B. Ramakrishna et al., Phys. Rev. Lett. 105, 135001 (2010)

    Article  ADS  Google Scholar 

  65. M. Tabak, D. Callahan, Nucl. Instr. Meth. Phys. Res. A544, 48 (2005)

    ADS  Google Scholar 

  66. M. Roth et al., Phys. Rev. Lett. 86, 436 (2001)

    Article  ADS  Google Scholar 

  67. M.H. Key et al., Fusion Sci. Technol. 49, 440 (2006)

    Google Scholar 

  68. V.Yu. Bychenkov et al., Plasma Phys. Rep. 27, 1017 (2001)

    Article  ADS  Google Scholar 

  69. M. Borghesi et al., Fusion Sci. Technol. 49, 412 (2006)

    Google Scholar 

  70. S. Atzeni, M. Temporal, J.J. Honrubia, Nucl. Fusion 42, L1 (2002)

    Article  ADS  Google Scholar 

  71. L. Yin, B.J. Albright, B.M. Hegelich, J. Fernandez, Laser Part. Beams 24, 291 (2006)

    Article  ADS  Google Scholar 

  72. B.J. Albright et al., Phys. Plasmas 14, 094502 (2007)

    Article  ADS  Google Scholar 

  73. B.M. Hegelich et al., Nucl. Fusion 51, 083011 (2011)

    Article  ADS  Google Scholar 

  74. A. Kemp, J. Meyer-ter-Vehn, S. Atzeni, Phys. Rev. Lett 86, 3336 (2001)

    Article  ADS  Google Scholar 

  75. L.J. Perkins et al., Phys. Rev. Lett. 103, 045004 (2009)

    Article  ADS  Google Scholar 

  76. A.J. Schmitt et al., Phys. Plasmas 17, 042701 (2010)

    Article  ADS  Google Scholar 

  77. X. Ribeyre et al., Plasma Phys. Control. Fusion 51, 124030 (2009)

    Article  ADS  Google Scholar 

  78. S. Atzeni, G. Schurtz, Proc. SPIE 8080, 808022 (2011)

    Article  Google Scholar 

  79. S. Atzeni et al., Nucl. Fusion 49, 055008 (2009)

    Article  ADS  Google Scholar 

  80. S. Atzeni et al., Comput. Phys. Commun. 169, 153 (2005)

    Article  ADS  Google Scholar 

  81. A.R. Bell, M. Tzoufras, Plasma Phys. Control. Fusion 53, 045010 (2011)

    Article  ADS  Google Scholar 

  82. W. Theobald et al., Phys. Plasmas 15, 056306 (2008)

    Article  ADS  Google Scholar 

  83. W.L. Kruer et al., Phys. Plasmas 3, 382 (1996)

    Article  ADS  Google Scholar 

  84. O. Klimo et al., Plasma Phys. Control. Fusion 52, 055013 (2010)

    Article  ADS  Google Scholar 

  85. S. Depierreux et al., Plasma Phys. Control. Fusion 53, 124034 (2011)

    Article  ADS  Google Scholar 

  86. J. Ebrardt, J.M. Chaput, J. Phys. Conf. Ser. 244, 032017 (2010)

    Article  ADS  Google Scholar 

  87. S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)

    Article  ADS  Google Scholar 

  88. J.A. Marozas et al., Phys. Plasmas 13, 056311 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work partially supported by the Italian project PRIN 2009FCC9MS and by HiPER project and Preparatory Phase Funding Agencies (EC, MSMT and STFC). I thank A. Schiavi and A. Marocchino for continuous collaboration on several topics discussed in this paper. I also thank G. Schurtz for many discussions on advanced ignition schemes and, particularly, for communicating me a few results on shock ignition prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Atzeni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Atzeni, S. (2013). Inertial Confinement Fusion with Advanced Ignition Schemes: Fast Ignition and Shock Ignition. In: McKenna, P., Neely, D., Bingham, R., Jaroszynski, D. (eds) Laser-Plasma Interactions and Applications. Scottish Graduate Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00038-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00038-1_10

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00037-4

  • Online ISBN: 978-3-319-00038-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics