Skip to main content

Growth Promotion of Legumes by Inoculation of Rhizosphere Bacteria

  • Chapter
Microbes for Legume Improvement

Abstract

Most plants grown in fields are colonized by diverse groups of rhizosphere bacteria that form beneficial or pathogenic relationships with their hosts. The root exudates encourage the development of beneficial bacterial communities in the root zone capable of producing secondary metabolites that improve plant growth and crop yield. These beneficial associations facilitate plant growth either by enhancing crop nutrition, releasing plant growth stimulating hormones, reducing damages caused by pathogens/pests by producing antibiotics, bacteriocins, siderophores, hydrolytic enzymes and other secondary metabolites or by improving resistance to environmental pollutants. Rhizosphere bacteria also supply biologically fixed nitrogen, solubilize bound phosphorus and may provide other nutrients, such as, potassium, iron and sulfur to plants. These beneficial associations hence, reduce the requirement of chemical fertilizers used for crop productivity. Moreover, some rhizobacteria are used to relieve the toxicity of metals and organic toxicants, either through stimulation of microbial degradation of pollutants in the rhizosphere, or by uptake of pollutants/toxicants by the plant. The inoculation of the legumes with such rhizosphere bacteria has often been found to increase symbiotic properties, plant biomass and yields under green house or field conditions. Tremendous progress has been made recently in characterizing the process of rhizosphere colonization, identification and cloning of bacterial genes involved in nitrogen fixation, phosphorus solubilization, production of plant growth regulators and in suppression of plant diseases. The interactions/relationships of rhizosphere bacteria with their hosts and performance of wild-type and genetically manipulated beneficial bacterial populations are discussed for their efficient utilization in legume production under sustainable agriculture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1994) Use of organic phosphorus by Rhizobium leguminosarum biovar viceae phosphatases. Biol Fertil Soils 18:216–218

    Article  CAS  Google Scholar 

  • Agasimani CA, Mudalagiriyappa MV, Sreenivasa MH (1994) Response of groundnut to phosphate solubilizing microorganisms. Groundnut News 6:5–7

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  PubMed  CAS  Google Scholar 

  • Akkermans ADL (1994) Application of bacteria in soils: problems and pitfalls. FEMS Microbiol Rev 15:185–194

    Article  CAS  Google Scholar 

  • Almeida JPF, Hartwig UA, Frehner M, Nosberger J, Luscher A (2000) Evidence that P deficiency induced N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Al-Niemi TS, Kahn ML, McDermott TR (1998) Phosphorus uptake by bean nodules. Plant Soil 198:71–78

    Article  CAS  Google Scholar 

  • Andrade G, De Leij FAAM, Lynch JM (1998) Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Lett Appl Microbiol 26:311–316

    Article  Google Scholar 

  • Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can J Microbiol 49:85–91

    Article  PubMed  CAS  Google Scholar 

  • Araujo AP, Plassard C, Drevon JJ (2008) Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply. Plant Soil 312:129–138

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentieve AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (1991) Microbial production of plant hormones. Plant Soil 133:1–8

    Article  CAS  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    PubMed  CAS  Google Scholar 

  • Bagyaraj DJ, Krishnaraj PU, Khanuja SPS (2000) Mineral phosphate solubilization: agronomic implications, mechanism and molecular genetics. Proc Indian Natn Sci Acad (PINSA) B66:69–82

    Google Scholar 

  • Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Balabel-Naglaa MA (1997) Silicate bacteria as biofertilizers. MSc Thesis, Agriculture Microbiology Department, Faculty of Agriculture, Ain Shams University, Egypt

    Google Scholar 

  • Bandenoch-Jones J, Summons RR, Djordjevic MA, Shine J, Letham DS, Rolfe BG (1982) Mass spectrometric quantification of indole-3-acetic acid in Rhizobium culture supernatants: relation to root hair curling and nodule initiation. Appl Environ Microbiol 44:275–280

    Google Scholar 

  • Banik S, Dey BK (1983) Phosphate solubilizing potentiality of microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralbl Microbiol 138:17–23

    CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  PubMed  CAS  Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    CAS  Google Scholar 

  • Bar-Ness E, Chen Y, Hadar Y, Marchner H, Romheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    Article  CAS  Google Scholar 

  • Bar-Ness EB, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores. Plant Physiol 99:1329–1335

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Deitz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  PubMed  CAS  Google Scholar 

  • Bender CL, Rangaswamy V, Loper J (1999) Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol 37:175–196

    Article  PubMed  CAS  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574

    Article  Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Min Manag 8:149–150

    Article  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport and phosphate availability. Annu Rev Plant Physiol 24:225–252

    Article  CAS  Google Scholar 

  • Bingham FT, Pereyea FJ, Jarrell WM (1986) Metal toxicity to agricultural crops. Met Ions Biol Syst 20:119–156

    CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Cur Opin Plant Biol 4:343–350

    Article  CAS  Google Scholar 

  • Bloemberg GV, Wijijes AHM, Lamers GEM, Sluurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different auto fluorescent proteins in the rhizosphere; new perspectives for studying microbial communities. Mol Plant-Microbe Inter 13:1170–1176

    Article  CAS  Google Scholar 

  • Boelens J, Woestyne MV, Verstraete W (1994) Ecological importance of motility for the plant growth-promoting Rhizopseudomonas strain ANP15. Soil Biol Biochem 26:269–277

    Article  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11

    Article  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  PubMed  CAS  Google Scholar 

  • Bollard EG (1983) Involvement of unusual elements in plant growth and nutrition. In: Lauchli A, Bielsky RL (eds) Inorganic plant nutrition: encyclopedia of plant physiology, vol 15B, Springer-Verlag KG. Berlin, Germany, pp 695–744

    Google Scholar 

  • Bolton H Jr, Elliott LF, Turco RF, Kennedy AC (1990) Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and deleterious root colonizing Pseudomonas sp. and effects on plant growth. Plant Soil 123:121–124

    Google Scholar 

  • Brewin NJ (2002) Pods and nods: a new look at symbiotic nitrogen fixing. Biologist 49:1–5

    Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, Kigel J, Okon Y (1997) Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929

    Article  CAS  Google Scholar 

  • Burns TA Jr, Bishop PE, Israel DW (1981) Enhanced nodulation of leguminous plant roots by mixed cultures of Azotobacter vinelandii and Rhizobium. Plant Soil 62:399–412

    Article  Google Scholar 

  • Burris RH, Roberts GP (1993) Biological nitrogen fixation. Annu Rev Nutr 13:317–335

    Article  PubMed  CAS  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdine in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    PubMed  CAS  Google Scholar 

  • Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotin GL, Campion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77

    Article  PubMed  CAS  Google Scholar 

  • Carroll H, Moenne-Loccoz Y, Dowling DN, O’Gara F (1995) Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2, 4-diacetyl phloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugar beets. Appl Environ Microbiol 61:3002–3007

    PubMed  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Furhmann JJ (1999) Screening of plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1998) Bacterial composition in the rhizosphere of nodulating and non-nodulating soybean. Soil Sci Soc Am J 62:1549–1555

    Article  CAS  Google Scholar 

  • Chander K, Brookes PC (1991) Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulaiton in a sandy loam soil and silty loam UK soil. Soil Biol Biochem 23:927–932

    Article  Google Scholar 

  • Chandra SN (1997) Selection of chickpea-rhizosphere-competent Pseudomonas fluorescens NBRI1303 antagonistic to Fusarium oxysporum f. sp. ciceri, Rhizoctonia bataticola and Pythium sp. Curr Microbiol 35:52–58

    Article  Google Scholar 

  • Chanway CP, Hynes RK, Nelson LM (1989) Plant growth promoting rhizobacteria: effect on the growth and nitrogen fixation of lentils (Lens esculenta Moench) and pea (Pisum sativum L.). Soil Biol Biochem 21:511–512

    Article  Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE (1992) Survival of the indigenous population of Rhizobium leguminosarum biovar trifolii in soil spiked with Cd, Zn, Cu and Ni salts. Soil Biol Biochem 24:625–632

    Article  CAS  Google Scholar 

  • Chen WX, Wang ET, Wang SY, Li YB, Chen XQ, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang. Int J Syst Bacteriol 45:153–159

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FD, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tri-calcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chet I, Borak Z, Oppenheim A (1993) Genetic engineering of microorganisms for improved biocontrol activity. Biotechnology 27:211–235

    Google Scholar 

  • Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanism of biocontrol of soil borne plant pathogens by rhizobacteria. Plant Soil 129:85–92

    Article  Google Scholar 

  • Christiansen I, Graham PH (2002) Variation in dinitrogen fixation among Andean bean (Phaseolus vulgaris L.) genotypes grown at low and high levels of phosphorus supply. Field Crops Res 73:133–142

    Article  Google Scholar 

  • Cocking EC, Webster G, Batchelor CA, Davey MR (1994) Nodulation of non-legume crops: a new look. Agro-Industry Hi-Tech. pp 21–24.

    Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  PubMed  CAS  Google Scholar 

  • Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R et al (eds) The rhizosphere, biochemistry and organic substances at the soil-plant interface. CRC Press, FL, pp 73–109

    Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szansiszlo PJ (1991) Mechanism of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    Article  CAS  Google Scholar 

  • Dashti N, Zhang F, Hynes RK, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200:205–213

    Article  CAS  Google Scholar 

  • Davis RM, Menge JA, Erwin DE (1979) Influence of Glomus fasciculatum and soil phosphorus on Verticillium wilt of cotton. Phytopathology 69:453–456

    Article  CAS  Google Scholar 

  • DeBoer DL, Duke SH (1982) Effects of sulphur nutrition on nitrogen and carbon metabolism in lucerne (Medicago sativa L.). Physiol Plant 54:343–350

    Article  CAS  Google Scholar 

  • Derylo M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant Soil 54:211–217

    Article  Google Scholar 

  • Deubel A, Merbach W (2005) Influence of microorganisms on phosphorus bioavailability in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin, Heidelberg, pp 177–191

    Chapter  Google Scholar 

  • Devine TE, Kuykendall LD (1996) Host genetic control of symbiosis in soybean (Glycine max L.). Plant Soil 186:173–187

    Article  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  PubMed  CAS  Google Scholar 

  • Dileep Kumar BS, Berggren I, Maartensson AM (2001) Potential for improving pea production by coinoculation with fluorescent Pseudomonas and Rhizobium. Plant Soil 229:25–34

    Article  Google Scholar 

  • Dileep Kumar BS, Dube HC (1992) Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biol Biochem 24:539–542

    Article  Google Scholar 

  • Dixon R, Cheng Q, Shen GF, Day A, Day MD (1997) Nif genes and expression in chloroplasts: prospects and problems. Plant Soil 194:193–203

    Article  CAS  Google Scholar 

  • Dubey SK (1997) Coinoculation of phosphate solubilizing bacteria with Bradyrhizobium japonicum to increase phosphate availability to rainfed soybean on vertisol. J Indian Soc Soil Sci 45:506–509

    Google Scholar 

  • Duffy BK, Simon A, Weller DM (1996) Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all disease on wheat. Phytopathology 75:774–777

    Google Scholar 

  • Dulhart J (1967) Quantitative estimation of indole acetic acid and indole carboxylic acid in root nodules and roots of Lupinus luteus L. Acta Bot N 16:222–230

    Google Scholar 

  • Dulhart J (1970) The bioproduction of indole-3-acetic acid and related compounds in root nodules and roots of Lupinus luteus L. by its rhizobial symbiont. Acta Bot N 19:573–615

    Google Scholar 

  • Elad Y (1990) Production of ethylene in tissues of tomato, pepper, French bean and cucumber in response to infection by Botrytis cinerea. Physiol Mol Plant Pathol 36:277–287

    Article  CAS  Google Scholar 

  • Elad Y, Chet I (1987) Possible role of competition for nutrients in biocontrol of Pythium damping off by bacteria. Phytopathology 77:190–195

    Article  Google Scholar 

  • Elkan GH (1992) Biological nitrogen fixation systems in tropical ecosystems: an overview. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. John Wiley, Chichester, UK, pp 27–40

    Google Scholar 

  • Ellis RJ, Timms-Wilson TM, Bailey MJ (2000) Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ Microbiol 2:274–284

    Article  PubMed  CAS  Google Scholar 

  • Elsiddig AE, Elsheikh, Ibrahim KA (1999) The effect of Bradyrhizobium inoculation on yield and seed quality of guar (Cyamopsis tetragonoloba L.). Food Chemistry 65:183–187

    Article  Google Scholar 

  • Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M (1987) Physiology, biochemistry and genetics of the uptake hydrogenase in rhizobia. Annu Rev Microbiol 41:355–361

    Article  Google Scholar 

  • Fernandez LA, Zalba P, Gomez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43:805–809

    Article  CAS  Google Scholar 

  • Fismes J, Vong PC, Guckert A, Frossard E (2000) Influence of sulfur on apparent N-use efficiency, yield and quantity of oilseed rape (Brassica napus L.) grown on a calcareous soil. Eur J Agron 12:127–141

    Article  CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Fuhrmann J, Wollum AG II (1989) Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability. Biol Fertil Soils 7:108–112

    Article  Google Scholar 

  • Fujiata K, Ofosu-Budu KG, Ogata S (1992) Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 141:155–175

    Article  Google Scholar 

  • Fukuhara H, Minakawa Y, Akao S, Minamisawa K (1994) The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol 35:1261–1265

    CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  PubMed  CAS  Google Scholar 

  • Gaind S, Gaur AC (1991) Thermotolerant phosphate solubilizing microorganisms and their interaction with mungbean. Plant Soil 133:141–149

    Article  CAS  Google Scholar 

  • Garbisu C, Hernandez-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188

    Article  PubMed  CAS  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  PubMed  CAS  Google Scholar 

  • Gharmakher HN, Machet JM, Beaudoin N, Recous S (2008) Estimation of sulfur mineralization and relationships with nitrogen and carbon in soils. Biol Fertil Soils 45:297–304

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR 12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    Article  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (1999) Bacteriocin producing native rhizobia of green gram (Vigna radiata) having competitive advantage in nodule occupancy. Microbiol Res 154:43–48

    Article  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2000) Pigment diverse mutants of Pseudomonas sp.: inhibition of fungal growth and stimulation of growth of Cicer arietinum. Biol Plant 43:563–569

    Article  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2001) Application of plant growth-promoting rhizobacteria as inoculants of cereals and legumes. In: Yadav AK, Raychaudhary S, Motsara MR (eds) Recent advances in biofertilizer technology. Society for promotion and utilization of resources and technology, New Delhi, pp 207–256

    Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum L.) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soils 36:391–396

    Article  CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of microbial phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Goldstein AH (2007) Future trends in research on microbial phosphate solubilization: one hundred years of insolubility. In: Velazquez E, Roderguez-Barrueco C (eds) Proceedings of first international meeting on microbial phosphate solubilization. Springer-Verlag, Berlin, pp 91–96

    Chapter  Google Scholar 

  • Goldstein AH, Rogers RD, Mead G (1993) Separating phosphate from ores via bioprocessing. Biotechnology 11:1250–1254

    CAS  Google Scholar 

  • Grimes HD, Mount MS (1984) Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol Biochem 16:27–30

    Article  Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agents Chemother 29:488–495

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Salono B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce a high amounts of physiologically active gibberllins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopatol 41:117–153

    Article  CAS  Google Scholar 

  • Habtemichial KH, Singh BR (2007) Wheat response to N2 fixed by faba bean (Vicia faba L.) as affected by sulphur fertilization and rhizobial inoculation in semi-arid northern Ethiopia. J Plant Nutr Soil Sci 170:412–418

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Chakrabarty PK (1991) Solubilizing of inorganic phosphates by Bradyrhizobium. Indian J Expt Biol 29:28–31

    CAS  Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick BR (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr J Plant Sci 44:37–42

    Google Scholar 

  • Halverson LJ, Handelsman J (1991) Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl Environ Microbiol 57:2767–2770

    PubMed  CAS  Google Scholar 

  • Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152:1–17

    Article  Google Scholar 

  • Hassanein WA, Awny NM, El-Mougith AA, El-Dien SH (2009) The antagonistic activities of some metabolites produced by Pseudomonas aeruginosa Sha8. J Appl Sci Res 5:404–414

    CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hervas A, Landa B, Jiménez-Díaz MR (1997) Influence of chickpea genotype and Bacillus sp. on protection from Fusarium wilt by seed treatment with nonpathogenic Fusarium oxysporum. Eur J Plant Pathol 103:631–642

    Article  Google Scholar 

  • Hoffland E, Hakulinen J, Van-Pelt JA (1996) Comparison of systemic resistance induced by avirulent and non-pathogenic Pseudomonas species. Phytopathology 86:757–762

    Article  Google Scholar 

  • Holl FB, Chanway CP, Turkington R, Radley RA (1988) Response of crested wheatgrass (Agrepyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol Biochem 20:19–24

    Article  CAS  Google Scholar 

  • Hu XF, Chen J, Guo JF (2006) Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Hynes RK, Leung GC, Hirkala DL, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in western Canada. Can J Microbiol 54:248–258

    Article  PubMed  CAS  Google Scholar 

  • Iruthayathas EE, Gunasekaran S, Vlassak K (1983) Effect of combined inoculation of Azospirillum and Rhizobium on nodulation and N2-fixation of winged bean and soybean. Sci Hort (Amsterdam) 20:231–240

    Article  Google Scholar 

  • Itzigsohn R, Kapulnik Y, Okon Y, Dovrat A (1993) Physiological and morphological aspects of interaction between Rhizobium meliloti and alfalfa (Medicago sativa) in association with Azospirillum brasilense. Can J Microbiol 39:610–615

    Article  Google Scholar 

  • Jamali F, Sharifi-Tehrani A, Okhovvat M, Zakeri Z, Saberi-Riseh R (2004) Biological control of chickpea Fusarium wilt by antagonistic bacteria under greenhouse condition. Commun Agric Appl Biol Sci 69:649–651

    PubMed  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  PubMed  CAS  Google Scholar 

  • Jisha MS, Alagawadi AR (1996) Nutrient uptake and yield of sorghum (Sorghum bicolor L. Moench) inoculated with phosphate solubilizing bacteria and cellulolytic fungus in cotton stalk amended vertisol. Microbiol Res 151:1–5

    Article  Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on plant health. In: Ghose TK, Ghosh P (eds) Advances in biochemical engineering. Springer, Berlin, pp 84–89

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1989) Trace elements in the soil and plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kamnev AA (2003) Phytoremediation of heavy metals: an overview. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology, vol 8, Bioremediation. Science Publishers Inc, Enfield (NH), USA, pp 269–317

    Google Scholar 

  • Kanazawa K, Higuchi K, Nishizawa NK, Fushiya S, Chino M, Mori S (1994) Nicotianamine aminotransferase activities are correlated to the phytosiderophore secretion under Fe-deficient conditions in Gramineae. J Exp Bot 45:1903–1906

    Article  CAS  Google Scholar 

  • Kaneshiro T, Kwolek WF (1985) Stimulated nodulation of soybeans by Rhizobium japonicum mutant (B-1405) that catalyzes the conversion of tryptophan to indole-acetic acid. Plant Sci 42:142–146

    Article  Google Scholar 

  • Karasu A, Öz M, Doğan R (2009) The effect of bacterial inoculation and different nitrogen doses on yield and yield components of some chickpea genotypes (Cicer arietinum L.). African J Biotechnol 8:59–64

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi - current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture - a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khot GG, Tauro P, Dadarwal KR (1996) Rhizobacteria from chickpea (Cicer arietinum L.) rhizosphere effective in wilt control and promote nodulation. Indian J Microbiol 36:217–222

    Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria and microbial diversity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:883–884

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Kloepper JW, Mahaffee WF, McInroy JA, Backman PA (1991) Comparative analysis of five methods for recovering rhizobacteria from cotton roots. Can J Microbiol 37:953–957

    Article  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Knight TJ, Langston-Unkeffer PJ (1988) Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen. Science 241:951–954

    Article  PubMed  CAS  Google Scholar 

  • Krishnan HB, Kim KY, Krishnan AH (1999) Expression of a Serratia marcescens chitinase gene in Sinorhizobium fredii USDA191 and Sinorhizobium meliloti RCR2011 impedes soybean and alfalfa nodulation. Mol Plant-microbe Interact 12:748–751

    Article  PubMed  CAS  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300

    Article  PubMed  CAS  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Li DM, Alexander M (1988) Co-inoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil 108:211–219

    Article  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigates. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Liu L, Jiang CY, Liu XY, Wu JF, Han JG, Liu SJ (2007) Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ Microbiol 9:465–473

    Article  PubMed  CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophore enhances levels of iron available to Pseudomonas putida in rhizosphere. Appl Environ Microbiol 65:5357–5363

    PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, de Weger LA, Bennett JW (1991) Microbial stimulation of plant growth and protection from disease. Cur Opin Microbiol 2:457–464

    CAS  Google Scholar 

  • Malik DK (2002) Influence of indole acetic acid producing Pseudomonas strains on symbiotic properties in green gram (Vigna radiata) and chickpea (Cicer arietinum). PhD thesis, submitted to CCS HAU, Hisar

    Google Scholar 

  • Malik DK, Sindhu SS (2008) Transposon-derived mutants of Pseudomonas strains altered in indole acetic acid production: effect on nodulation and plant growth in green gram (Vigna radiata L.). Physiol Mol Biol Plants 14:315–320

    Article  CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengal K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Article  CAS  Google Scholar 

  • Maurhofer M, Keel C, Schnider U, Voisard C, Hass D, Defago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacity. Phytopathology 82:190–195

    Article  CAS  Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Defago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation. Annu Rev Phytopatol 44:417–445

    Article  CAS  Google Scholar 

  • Mavrodi DV, Bonsal RF, Delaney SM, Soule MJ, Phillips G (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Ksenzenko VN, Bonsal RF, Cook RJ, Boronin AM (1998) A seven gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180:2541–2548

    PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    Article  PubMed  CAS  Google Scholar 

  • Memon YM, Fergus IF, Hughes JD, Page DW (1988) Utilization of non-exchangeable soil potassium in relation to soil types, plant species and stage of growth. Aust J Soil Res 26:489–496

    Article  CAS  Google Scholar 

  • Mendoza A, Leija A, Martinez-Romero E, Hernandez G, Mora J (1995) The enhancement of ammonium assimilation in Rhizobium elti prevents nodulation of Phaseolus vulgaris. Mol Plant-Microbe Interact 8:584–592

    Article  PubMed  CAS  Google Scholar 

  • Mendoza A, Valderrama B, Leija A, Mora J (1998) NifA-dependent expression of glutamate dehydrogenase in Rhizobium etli modifies nitrogen partitioning during symbiosis. Mol Plant-Microbe Interact 11:83–90

    Article  PubMed  CAS  Google Scholar 

  • Merharg AA, Killham K (1995) Loss of exudates from roots of perennial rye grass inoculated with a range of microorganisms. Plant Soil 170:345–349

    Article  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  PubMed  CAS  Google Scholar 

  • Milner JL, Stohl EA, Handelsman J (1996) Zwittermicin A resistance gene from Bacillus cereus. J Bacteriol 178:4266–4272

    PubMed  CAS  Google Scholar 

  • Minamisawa K, Fukai K (1991) Production of indole-3-acetic acid by Bradyrhizobium japonicum: a correlation with genotype grouping and rhizobitoxine production. Plant Cell Physiol 32:1–9

    CAS  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS (2009a) Coinoculation of Bacillus thuringiensis -KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 25:753–761

    Article  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Kundu S, Gupta HS (2009b) Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thruingiensis-KR1. Acta Agric Scand B Soil Plant Sci 59:189–196

    CAS  Google Scholar 

  • Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230–243

    Article  PubMed  CAS  Google Scholar 

  • Nambiar PTC, Ma SW, Iyer YN (1990) Limiting insect infestation of nitrogen fixing root nodules of the pigeon pea (Cajanus cajan L.) by engineering an entomocidal gene in its root nodules. Appl Environ Microbiol 56:2866–2869

    PubMed  CAS  Google Scholar 

  • Nautiyal CS (1997) Selection of chickpea rhizosphere-competent Pseudomonas fluorescens NBRI 1303 antagonistic to Fusarium oxysporum f. sp. ciceris, Rhizoctonia bataticola and Pythium sp. Curr Microbiol 35:52–58

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelators. In: Winkelmann G (ed) Microbial iron chelators. CRC Handbook of CRC Press, London, UK, pp 1–14

    Google Scholar 

  • Nishijima F, Evans WR, Vesper SJ (1988) Enhanced nodulation of soybean by Bradyrhizobium in the presence of Pseudomonas fluorescens. Plant Soil 111:149–150

    Article  Google Scholar 

  • Olivera M, Tejera N, Iribane C, Ocana A, Lluch C (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris L.): effect of phosphorus. Physiol Plant 121:498–505

    Article  CAS  Google Scholar 

  • Pandey A, Kumar S (1989) Potential of azospirilla as biofertilizers for upland agriculture – a review. J Sci Ind Res 48:134–144

    Google Scholar 

  • Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) The role of bacterial indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Pau AS (1991) Improvement of Rhizobium inoculants by mutation, genetic engineering and formulation. Biotechnol Adv 9:173–184

    Article  Google Scholar 

  • Peoples MB, Herridge DF (1990) Nitrogen fixation by legumes in tropical and subtropical agriculture. Adv Agron 44:155–223

    Article  CAS  Google Scholar 

  • Pereira PAA, Bliss FA (1987) Nitrogen fixation and plant growth of common bean (Phaseolus vulgaris L.) at different levels of phosphorus availability. Plant Soil 104:79–84

    Article  CAS  Google Scholar 

  • Peter NK, Verma DPS (1990) Phenolic compounds as regulators of gene expression in plant-microbe interaction. Mol Plant-Microbe Interact 3:4–8

    Article  Google Scholar 

  • Pierson FA, Weller DM (1994) Use of mixtures of fluorescent pseudomonad to suppress take-all and improve the growth of wheat. Phytopathology 84:940–947

    Article  Google Scholar 

  • Plazinski J, Rolfe BG (1985) Azospirillum-Rhizobium interaction leading to a plant growth stimulation without nodule formation. Can J Microbiol 31:1026–1030

    Article  CAS  Google Scholar 

  • Podile AR (1995) Seed bacterization with Bacillus subtilis AF1 enhances seedling emergence, growth and nodulation of pigeonpea. Indian J Microbiol 35:199–204

    Google Scholar 

  • Prabhakar M, Saraf CS (1990) Dry matter accumulation and distribution in chickpea as influenced by genotype, P source and irrigation level. Indian J Agric Sci 60:204–206

    Google Scholar 

  • Prinsen EN, Chauvaux J, Schmidt M, John U, Wieneke J, De Greef J, Schell O, Onckelen van H (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 282:53–55

    Article  PubMed  CAS  Google Scholar 

  • Rajarathinam K, Balamurugan T, Kulasekarapandian R, Veersami S, Jayabalan M (1995) Isolation and screening of phosphate solubilizers from soil of Kamarajar district (Tamil Nadu). J Exotoxic Environ Monit 5:155–157

    Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH (2005) Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential. Curr Microbiol 50:266–271

    Article  PubMed  CAS  Google Scholar 

  • Randhawa PS, Schaad NW (1985) A seedling bioassay chamber for determining bacterial colonization and antagonism on plant roots. Phytopathology 75:254–259

    Article  Google Scholar 

  • Rasch T, Wachter A (2005) Sulphur metabolism: a versatile plateform for launching defence operations. Trends Plant Sci 10:503–509

    Article  CAS  Google Scholar 

  • Rashid M, Khalil S, Ayub N, Alam S, Latif M (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Raverkar KP, Konde BK (1988) Effect of Rhizobium and Azosprillum lipoferum inoculation on the nodulation, yield and nitrogen uptake of peanut cultivars. Plant Soil 106:249–252

    Article  CAS  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tover E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008a) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Remans R, Croonenborghs A, Torres-Gutierrez R, Michiels J, Vanderleyden J (2007) Effects of plant growth promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant nutrition. Eur J Plant Pathol 119:341–351

    Article  CAS  Google Scholar 

  • Remans R, Ramaekers L, Schalkens S, Hernandez G, Garcia A, Reyes JL, Mendez N, Toskano V, Mulling M, Galvez L, Vanderleyden J (2008b) Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    Article  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Robinson MM, Shah S, Tamot B, Pauls KP, Moffatt BA, Glick BR (2001) Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol 2:135–145

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Ganzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rodriguez H, Gonzalez T, Selman G (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84:155–161

    Article  CAS  Google Scholar 

  • Ronson CW, Bosworth A, Genova M, Gudbrandsen S, Hankinson T, Kwaitowski R, Ratcliffe H, Robie C, Sweeney P, Szeto W, Williams M, Zablotowicz R (1990) Field release of genetically engineered Rhizobium meliloti and Bradyrhizobium japonicum strains. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, USA, pp 397–403

    Chapter  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Enggvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    Article  CAS  Google Scholar 

  • Sahgal M, Johri BN (2006) The changing face of rhizobial systematic. Cur Sci 84:43–48

    Google Scholar 

  • Saraf CS, Shivkumar BG, Patil RR (1997) Effect of phosphorus, sulphur and seed inoculation on performance of chickpea (Cicer arietinum). Indian J Agron 42:323–328

    CAS  Google Scholar 

  • Sarawgi SK, Tiwari PK, Tripathi RS (1999) Uptake and balance sheet of nitrogen and phosphorus in gram (Cicer arietinum) as influenced by phosphorus biofertilizers and micronutrients under rain-fed conditions. Indian J Agron 44:768–772

    Google Scholar 

  • Sarawgi SK, Tiwari PK, Tripathi RS (2000) Growth, nodulation and yield of chickpea as influenced by phosphorus, bacterial culture and micronutrients under rain-fed conditions. Madras Agric J 86:181–185

    Google Scholar 

  • Scher FM, Kloepper JW, Singleton CA (1985) Chemotaxis of fluorescent Pseudomonas spp. to soybean root exudates in vitro and in soil. Can J Microbiol 31:570–574

    Article  Google Scholar 

  • Scherer HW (2009) Sulfur in soils. J Plant Nutr Soil Sci 172:326–335

    Article  CAS  Google Scholar 

  • Scherer HW, Lange A (1996) N2 fixation and growth of legumes as affected by sulphur fertilization. Biol Fertil Soils 23:449–453

    Article  CAS  Google Scholar 

  • Scherer HW, Pacyna S, Spoth KR (2008) Low levels of ferrodoxin, ATP and leghaemoglobin contribute to limited N2 fixation in peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions. Biol Fertil Soils 44:909–916

    Article  CAS  Google Scholar 

  • Scherwinski K, Grosch R, Berg G (2008) Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol Ecol 64:106–116

    Article  PubMed  CAS  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    Article  PubMed  CAS  Google Scholar 

  • Sheng XF, He LY, Huang WY (2002) The conditions of releasing potassium by a silicate-dissolving bacterial strain NBT. Agric Sci China 1:662–666

    Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sinica 39:863–871

    CAS  Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edphicaus strain NBT and its effect on growth of chili and cotton. Agric Sci China 2:410–412

    Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    PubMed  CAS  Google Scholar 

  • Sindhu SS, Dadarwal KR (2000) Competition for nodulation among rhizobia in legume-Rhizobium symbiosis. Indian J Microbiol 32:175–180

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156:353–358

    Article  PubMed  CAS  Google Scholar 

  • Sindhu SS, Dadarwal KR, Davis TM (1992) Non-nodulating chickpea breeding line for the study of symbiotic nitrogen fixation potential. Indian J Microbiol 40:211–246

    Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol Fertil Soils 29:62–68

    Article  CAS  Google Scholar 

  • Sindhu SS, Gupta SK, Suneja S, Dadarwal KR (2002a) Enhancement of green gram nodulation and plant growth by Bacillus species. Biol Plant 45:117–120

    Article  Google Scholar 

  • Sindhu SS, Jangu OP, Sivaramaiah N (2009a) Genetic engineering of diazotrophic bacteria to improve nitrogen fixation for sustainable agriculture. In: Sayyed RZ, Patil AS (eds) Biotechnology emerging trends. Scientific Publishers, Jodhpur, India, pp 73–112

    Google Scholar 

  • Sindhu SS, Rakshiya YS, Malik DK (2009b) Rhizosphere bacteria and their role in biological control of plant diseases. In: Sayyed RZ, Patil AS (eds) Biotechnology emerging trends. Scientific Publishers, Jodhpur, India, pp 17–52

    Google Scholar 

  • Sindhu SS, Rakshiya YS, Sahu G (2009c) Biological control of soilborne plant pathogens with rhizosphere bacteria. Pest Technol 3:10–21

    Google Scholar 

  • Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR (2002b) Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil conditions. Appl Soil Ecol 19:57–64

    Article  Google Scholar 

  • Sitrit Y, Barak Z, Kapulnik Y, Oppenheim AB, Chet I (1993) Expression of Serratia marcescens chitinase gene in Rhizobium meliloti during symbiosis on alfalfa roots. Mol Plant Microbe Interact 6:293–298

    Article  CAS  Google Scholar 

  • Spadro D, Cullino ML (2005) Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot 24:601–613

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbial Rev 31:425–428

    Article  CAS  Google Scholar 

  • Srinivasan M, Petersen DJ, Holl FB (1996) Influence of indole acetic acid producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditions. Can J Microbiol 42:1006–1014

    Article  CAS  Google Scholar 

  • Srinivasan M, Petersen DJ, Holl FB (1997) Nodulation of Phaseolus vulgaris by Rhizobium etli is enhanced in the presence of Bacillus. Can J Microbiol 43:1–8

    Article  CAS  Google Scholar 

  • Srivastava TK, Ahalwat LPS, Panwar JDS (1998) Effect of phosphorus, molybdenum and biofertilizers on productivity of pea. Indian J Plant Physiol 3:237–239

    CAS  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. Wiley, London

    Google Scholar 

  • Stockwell VO, Stack JP (2007) Using Pseudomonas spp. for integrated biological control. Phytopathology 97:244–249

    Article  PubMed  Google Scholar 

  • Sturz AV, Carter MR, Johnston AW (1997) A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture. Soil Till Res 41:169–189

    Article  Google Scholar 

  • Sturz AV, Christie BR (1998) The potential benefits from cultivar specific red clover-potato crop rotations. Ann Appl Biol 133:365–373

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Stutz EG, Defago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185

    Article  Google Scholar 

  • Taele WD, Paponov IA, Palme K (2006) Auxin in action: signaling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204

    Article  PubMed  CAS  Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field grown legumes. Appl Environ Microbiol 57:19–28

    PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen N (eds) Plant-microbe interactions, vol 1, Chapman and Hall. New York, USA, pp 187–235

    Chapter  Google Scholar 

  • Timmis-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodl DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic acid biosynthesis pathway enhances efficacy of damping off disease control by Pseudomonas fluorescens. Mol Plant-Microbe Interact 13:1293–1300

    Article  Google Scholar 

  • Trapero-Casas A, Kaiser WJ, Ingram DM (1990) Control of Pythium seed rot and preemergence damping-off of chickpea in the U.S. Pacific Northwest Spain. Plant Dis 74:563–569

    Article  Google Scholar 

  • Trevors JT, Van Elsas JD, Van Overbeek LS, Starodub ME (1990) Transport of genetically engineered Pseudomonas fluorescens strain through a soil microcosm. Appl Environ Microbiol 56:401–408

    PubMed  CAS  Google Scholar 

  • Triplett EW (1988) Isolation of genes involved in nodulation competitiveness from Rhizobium leguminosarum bv. trifolii T24. Proc Natl Acad Sci USA 85:3810–3814

    Article  PubMed  CAS  Google Scholar 

  • Triplett EW (1990) Construction of a symbiotically effective strain of Rhizobium leguminosarum bv. trifolii with increased nodulation competitiveness. Appl Environ Microbiol 56:98–103

    PubMed  CAS  Google Scholar 

  • Turner JT, Backman PA (1991) Factors relating to peanut yield increased following Bacillus subtilis seed treatment. Plant Dis 75:347–353

    Article  Google Scholar 

  • van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria in soil: a review. Biol Fertil Soils 10:127–133

    Google Scholar 

  • van Loon LC (1984) Regulation of pathogenesis and symptom expression in diseased plants by ethylene. In: Fuchs Y, Chalutz E (eds) Ethylene: biochemical, physiological and applied aspects. Martinus Nijhoff, the Hague, The Netherlands, pp 171–180

    Google Scholar 

  • van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  CAS  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    PubMed  Google Scholar 

  • Varin S, Leveel B, Lavenant SL, Cliquet JB (2008) Does the white clover response to sulphur availability correspond to phenotypic or on congenetic plasticity. Acta Oecologica 35:452–457

    Article  Google Scholar 

  • Varin S, Lemauviel-Lavenant S, Cliquet JB, Diquelou S, Padraic T, Michaelson-Yeates T (2009) Functional plasticity of Trifolium repens L. in response to sulphur and nitrogen availability. Plant Soil 317:189–200

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Rao AV, Raina P (1984) Evaluation of phosphorus solubilization by microorganisms isolated from arid soils. J Indian Soc Soil Sci 32:273–277

    CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sanchez-Contreras M, Lloret J, de Carcer DA, Oreuzabal RI, Bolanos L, Macek T, Karlson U, Dowling DN, Martin M, Rivilla R (2005) PCB rhizoremediation by Pseudomonas fluorescens F113 derivatives using a Sinorhizobium meliloti nod system to derive bph gene expression. Appl Environ Microbiol 71:2687–2694

    Article  PubMed  CAS  Google Scholar 

  • Voisard C, Keel C, Hass D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  CAS  Google Scholar 

  • Wallace A, Wallace GA, Cha JW (1992) Some modifications in trace elements toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents: The special case of iron. J Plant Nutr 15:1589–1598

    Article  CAS  Google Scholar 

  • Wang TL, Wood EA, Brewin NJ (1982) Growth regulators, Rhizobium and nodulation in peas: the cytokinin content of a wild type and Ti-plasmid containing strain of R. leguminosarum. Planta 155:350–355

    Article  CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferroxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 47:642–652

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen fixing and phosphate-solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Wani SP (1990) Inoculation with associative nitrogen fixing bacteria: role in cereal grain production improvement. Indian J Microbiol 30:363–393

    Google Scholar 

  • Weller DM (1985) Application of fluorescent pseudomonads to control root diseases. In: Parker CS, Rovira AD, Moore KJ, Wong PTW, Kollmorgan JF (eds) Ecology and management of soilborne plant pathogens. American Phytopathological Society, St. Paul, pp 137–140

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe parternerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  PubMed  CAS  Google Scholar 

  • Wiliems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14

    Article  CAS  Google Scholar 

  • Wilson KJ, Peop MB, Jefferson RA (1995) New techniques for studying competition by rhizobia and for assessing nitrogen fixation in the field. Plant Soil 174:241–253

    Article  CAS  Google Scholar 

  • Wong PTW, Baker R (1984) Suppression of wheat take-all and ophiobolus patch by fluorescent pseudomonads from a Fusarium-suppressive soil. Soil Biol Biochem 16:397–403

    Article  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indole acetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Yahalom E, Okon Y, Dovrat A (1990) Possible mode of action of Azospirillum brasilense strain Cd on the root morphology and nodule formation in burr medic (Medicago polymorpha). Can J Microbiol 36:10–14

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  CAS  Google Scholar 

  • Yuhanshi KI, Akao S, Fukuhara H, Tateno E, Chum JY, Stacey G, Hara H, Kubota M, Asami T, Minamisawa K (1995) Bradyrhizobium elkanii induces outer cortical root swelling in soybean. Plant Cell Physiol 36:151–157

    Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–459

    Article  Google Scholar 

  • Zhao FJ, Wood AP, McGrath SP (1999) Effects of sulphur nutrition on growth and nitrogen fixation of pea (Pisum sativum L.). Plant Soil 212:209–219

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyavir S. Sindhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sindhu, S.S., Dua, S., Verma, M.K., Khandelwal, A. (2010). Growth Promotion of Legumes by Inoculation of Rhizosphere Bacteria. In: Khan, M.S., Musarrat, J., Zaidi, A. (eds) Microbes for Legume Improvement. Springer, Vienna. https://doi.org/10.1007/978-3-211-99753-6_9

Download citation

Publish with us

Policies and ethics