Skip to main content

Materials Processing

  • Chapter
  • First Online:
Ion Beams in Materials Processing and Analysis

Abstract

Materials processing by implantation of energetic ions into solid surfaces has been applied in many fields of modern production technologies. For the last 40 years, ion implantation became the key technology especially in semiconductor technology for the production of ultra-large-scale integrated (ULSI) circuits, for example, silicon processors and memory devices. The type and value of semiconductor conductivity can be selected by the type and amount of implanted doping ions, for example, implantation of boron, gallium, or indium ions for p-type doping and of phosphorous, arsenic, or antimony ions for n-type doping of silicon. The necessary dopant concentration to be implanted is below 0.1 at.%. On the other hand by implanting high ion fluences, high impurity concentrations of tens of at.% can be achieved giving the possibility to synthesize buried layers of compound materials, for example SiO2 layers in Si by high fluence oxygen ion implantation. The well-known relations between ion energy and ion penetration depth for all important dopant–semiconductor combinations meet the demands of microelectronic technology for introducing doping concentrations with an error smaller than ±1 %. Lateral doping homogeneities over large wafer areas with an error of ~1 %, multiple implantation steps of different ions without significant interaction of the introduced dopants are standard for the ion implantation technique. Ion implantation is the only doping technique for the fabrication of device structures with dimensions in the nanometer range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furukawa S, Matsumura H, Ishiwara H (1972) Theoretical considerations on lateral spread of implanted ions. Jpn J Appl Phys 11:134

    Article  CAS  Google Scholar 

  2. Ryssel H, Ruge I (1978) Ion implantation. Akademische Verlagsgesellschaft Geest & Portig K.-G, Leipzig

    Google Scholar 

  3. Gibbons JF (1968) Ion implantation in semiconductors – part I: range distribution theory and experiments. Proc IEEE 56:295

    Article  CAS  Google Scholar 

  4. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New York

    Google Scholar 

  5. Maes H, Vandervorst W, van Overstraten R (1981) Impurity profiles of implanted ions in silicon. In: Wang FY (ed) Impurity doping processes in silicon. North-Holland, Amsterdam, p 443, Ch. 7

    Chapter  Google Scholar 

  6. Gibbons JF, Mylroie S (1973) Estimation of impurity profiles in ion implanted amorphous targets using joined half-Gaussian distributions. Appl Phys Lett 22:568

    Article  CAS  Google Scholar 

  7. Hofker WK (1975) Implantation of boron in silicon. Philips Res Rep Suppl no. 8, pp 1–126

    Google Scholar 

  8. Tasch AF, Shin H, Park C et al (1989) An improved approach to accurately model shallow B and BF2 implants in silicon. J Electrochem Soc 136:810

    Article  CAS  Google Scholar 

  9. Tasch AF, Yang SH, Morris SJ (1995) Modeling of ion implantation in single-crystal silicon. Nucl Instrum Methods Phys Res B 102:173

    CAS  Google Scholar 

  10. Zhang H, Gao M, Xu L et al (2008) United Gauss-Pearson-IV distribution model of ions implanted into silicon. Solid State Ionics 179:832

    Article  CAS  Google Scholar 

  11. Posselt M (1994) Crystal-Trim and its application to investigations on channeling effects during ion implantation. Radiat Eff Def Solids 130–131:87

    Article  Google Scholar 

  12. Möller W, Eckstein W (1984) TRIDYN – a TRIM simulation code including dynamic composition changes. Nucl Instrum Methods Phys Res B 2:814

    Article  Google Scholar 

  13. Wolf S, Taylor RN (2000) Silicon processing for the VLSI Era, vol. 1: process technology, 2nd edn. Lattice Press, Sunset Beach, CA, p 375

    Google Scholar 

  14. Klein K, Park C, Tasch AF et al (1991) Analysis of the tilt and rotation angle dependence of boron distributions implanted into <100> silicon. J Electrochem Soc 138:2102

    Article  CAS  Google Scholar 

  15. Roy K, Mukhopadhyay S, Mahmoodi-Meimand HS (2003) Leakage current mechanisms and leakage reduction techniques in deep-sub micrometer CMOS circuits. Proc IEEE 91:305

    Article  CAS  Google Scholar 

  16. Klein KM, Park C, Tasch AF (1991) Modeling of cumulative damage effects on ion-implantation profiles. Nucl Instrum Methods 59–60:60

    Google Scholar 

  17. Posselt M, Schmidt B, Murthy CS et al (1997) Modeling of damage accumulation during ion implantation into single-crystalline silicon. J Electrochem Soc 144:1495

    Article  CAS  Google Scholar 

  18. Simonton R Tash AL (1996) Channeling effects in ion implantation into silicon. In: Ziegler J (ed) Ion implantation science and technology. Ion Implantation Technology Co., pp 293–390

    Google Scholar 

  19. Gibbons JF (1972) Ion implantation in semiconductors – part II: damage production and annealing. Proc IEEE 60:1062

    Article  CAS  Google Scholar 

  20. Morehead FF, Crowder BL, Title RS (1972) Formation of amorphous silicon by ion bombardment as a function of ion, temperature, and dose. J Appl Phys 43:1112

    Article  CAS  Google Scholar 

  21. Meyer JW, Erikson L, Davies JA (1970) Ion implantation in semiconductors. Academic, New York

    Google Scholar 

  22. Harris JS (1971) The effects of dose rate and implantation temperature on lattice damage and electrical activity in ion- implanted GaAs. In: Ruge I, Graul J (eds) Ion implantation in semiconductors. Springer, Berlin, pp 157–167

    Chapter  Google Scholar 

  23. Westmoreland JE, Marsh OJ, Hunsperger RG (1970) Lattice disorder produced in GaAs by 60-keV Cd ions and 70-keV Zn ions. Radiat Eff 5:245

    Article  CAS  Google Scholar 

  24. Haskell JD, Grant WA, Stephens GA, Whitton LJ (1971) The influence of various parameters on radiation damage in GaP. In: Ruge I, Graul J (eds) Ion implantation in semiconductors. Springer, Berlin, pp 193–198

    Chapter  Google Scholar 

  25. Krimmel EF, Pfleiderer H (1973) Implantation profiles modified by sputtering. Rad Eff 19:83

    Article  CAS  Google Scholar 

  26. Teichert J, Bischoff L, Hessey E et al (1996) Cobalt disilicide interconnects for micromechanical devices. J Micromech Microeng 6:272

    Article  CAS  Google Scholar 

  27. Sigmund P (1969) Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys Rev 184:383

    Article  CAS  Google Scholar 

  28. Winterbon KB, Sigmund P, Sanders JB (1970) Spatial distribution of energy deposited by atomic particles in elastic collisions. Mat Fys Medd Dan Vid Selsk 37(14):1–73

    Google Scholar 

  29. Colligon JS (1961) Ion bombardment of metal surfaces. Vacuum 11:272

    Article  CAS  Google Scholar 

  30. Anderson HH, Bay HL (1975) Heavy-ion sputtering yield of silicon. J Appl Phys 46:1919

    Article  Google Scholar 

  31. Behrisch R (ed) (1981) Sputtering by ion bombardment. Springer, Berlin

    Google Scholar 

  32. Malherbe JB (1994) Sputtering of compound semiconductor surfaces. I. Ion-solid interactions and sputtering yields. Crit Rev Solid State Mater Sci 19:55

    Article  CAS  Google Scholar 

  33. Malherbe JB (1994) Sputtering of compound semiconductor surfaces. II. Compositional changes, radiation-induced topography and damage. Crit Rev Solid State Mater Sci 19:128

    Google Scholar 

  34. Heera V, Prokert F, Schell L et al (1997) Density and structural changes in SiC after amorphization and annealing. Appl Phys Lett 70:3531

    Article  CAS  Google Scholar 

  35. Bischoff L, Teichert J (1998) Focused ion beam sputtering of silicon and related materials. Research report, FZR-217, Research Center Rossendorf, pp 25–32

    Google Scholar 

  36. Philipp P, Bischoff L (2011) Investigations of conducting nano-structures on ta-C films made by FIB lithography. Nucl Instrum Methods Phys Res B. doi:10.1016/j.nimb.2011.08.057

  37. Andersen HH (1979) The depth resolution of sputter profiling. Appl Phys 18:131

    Article  CAS  Google Scholar 

  38. Schwarz SA, Helms CR (1979) An ion knock-on mixing model with application to Si-SiO2 interface studies. J Vac Sci Technol 16:781

    Article  CAS  Google Scholar 

  39. Chu WK, Müller H, Mayer JW, Sigmon TW (1974) Residual disorder in Si from oxygen recoils in annealed “through-oxide” arsenic implants. Appl Phys Lett 25:297

    Article  CAS  Google Scholar 

  40. Sigmon TW, Chu WK, Müller H, Mayer JW (1975) Enhanced residual disorder in silicon from recoil implantation of oxygen and nitrogen by arsenic implants through dielectric layers. In: Namba S (ed) Ion implantation in semiconductors. Plenum Press, New York, pp 633–639

    Chapter  Google Scholar 

  41. Muline RA, Cullis AG (1975) Residual defects in Si produced by recoil implantation. Appl Phys Lett 26:551

    Article  Google Scholar 

  42. Petkov MP, Chen CM, Atwater HA et al (2000) A relation between surface oxide and oxygen-defect complexes in solid-phase epitaxial Si regrown from ion-beam-amorphized Si layers. Appl Phys Lett 76:1410

    Article  CAS  Google Scholar 

  43. Liu HL, Gearhart SS, Booske JH, Cooper RF (2000) Recoil implantation method for ultrashallow p(+)/n junction formation. J Appl Phys 87:1957

    Article  CAS  Google Scholar 

  44. Shao L, Lu X, Jin J et al (2000) Depth profiles of high-energy recoil implantation of boron into silicon. Mater Res Soc Symp 610:B6.8.1

    Article  Google Scholar 

  45. Nastasi M, Mayer JW (1994) Ion beam mixing in metallic and semiconductor materials. Mater Sci Eng R Rep 12:1

    Article  Google Scholar 

  46. Tsaur BY, Lau SS, Liau ZL, Mayer JW (1979) Ion-beam-induced intermixing of surface layers. Thin Solid Films 63:31

    Article  CAS  Google Scholar 

  47. Mayer JW, Lau SS (1983) Ion beam mixing. In: Poate JM, Foti G, Jacobson DC (eds) Surface modification and alloying by laser, ion, and electron beams. Plenum, New York, p 241

    Google Scholar 

  48. Matteson S, Paine BM, Grimaldi MG et al (1981) Ion beam mixing in amorphous silicon I. Experimental investigation. Nucl Instrum Methods 182–183:43

    Article  Google Scholar 

  49. Heinig KH, Hohmuth K, Klabes R et al (1982) Flash lamp annealing of ion implanted silicon. Radiat Eff Def Solids 63:115

    Article  CAS  Google Scholar 

  50. Heinig KH, Klabes R, Woittennek H (1980) A description of the laser-induced annealing and diffusion behaviour of implanted silicon crystals. Radiat Eff 47:157

    Article  CAS  Google Scholar 

  51. Appleton BR, Celler GK (eds) (1982) Laser and electron beam interactions with solids. Elsevier North Holland, New York

    Google Scholar 

  52. Shima A (2006) Laser annealing technology and device integration challenges. In: 14th IEEE international conference on advanced thermal processing of semiconductors – RTP 2006, pp 11–14

    Google Scholar 

  53. Friedrich D, Bernt H, Hanssen H et al (2007) Laser annealing of power devices. In: 15th IEEE international conference on advanced thermal processing of semiconductors – RTP 2007, pp 263–269

    Google Scholar 

  54. Paetzel R, Brune J, Simon F et al (2010) Activation of silicon wafer by excimer laser. In: 18th IEEE international conference on advanced thermal processing of semiconductors – RTP 2010, pp 98–102

    Google Scholar 

  55. Chen S, Wang X, Thompson M (2010) Characterization of dopant activation, mobility and diffusion in advanced millisecond laser spike annealing. In: 18th IEEE international conference on advanced thermal processing of semiconductors – RTP 2010, pp 66–70

    Google Scholar 

  56. Cohen RL, Williams JS, Feldman LC, West KW (1978) Thermally assisted flash annealing of silicon and germanium. Appl Phys Lett 33:751

    Article  CAS  Google Scholar 

  57. Bomke HA, Berkowitz HL, Harmatz M et al (1978) Annealing of ion-implanted silicon by an incoherent light pulse. Appl Phys Lett 33:955

    Article  CAS  Google Scholar 

  58. Lue JT (1980) Arc annealing of BF +2 implanted silicon by a short pulse flash lamp. Appl Phys Lett 36:73

    Article  CAS  Google Scholar 

  59. Fiory AT (2001) Rapid thermal annealing. In: Buschow KHJ et al (eds) Encyclopedia of materials: science and technology. Permagon, Elsevier Science, Amsterdam, pp 8009–8017

    Google Scholar 

  60. Kamgar A (1989) Rapid thermal processing of silicon. In: Watts RK (ed) Submicron integrated circuits. Wiley Interscience, New York

    Google Scholar 

  61. Roozeboom F, Parekh N (1990) Rapid thermal processing systems: a review with emphasis on temperature control. J Vac Sci Technol B 8:1249

    Article  CAS  Google Scholar 

  62. Fair RB (ed) (1993) Rapid thermal processing: science and technology. Academic, New York

    Google Scholar 

  63. Roozeboom F (ed) (1996) Advances in rapid thermal and integrated processing. Klewer, Dordrecht

    Google Scholar 

  64. Sze SM (2002) Semiconductor-device-physics-technology, 2nd edn. Wiley, New York

    Google Scholar 

  65. Krynitzky J, Suski J, Ugniewski S (1977) Laser annealing of arsenic implanted silicon. Phys Lett A 61:181

    Article  Google Scholar 

  66. Celler GK, Poate JM, Kimerling LC (1978) Spatially controlled crystal regrowth of ion implanted silicon by laser irradiation. Appl Phys Lett 32:464

    Article  CAS  Google Scholar 

  67. Skorupa W, Gebel T, Yankov RA, Paul S et al (2005) Advanced thermal processing of ultra-shallow implanted junctions using flash lamp annealing. J Electrochem Soc 152:G436–G440

    Article  CAS  Google Scholar 

  68. Gebel T, Voelskow M, Skorupa W et al (2002) Flash lamp annealing with millisecond pulses for ultra-shallow boron profiles in silicon. Nucl Instrum Methods Phys Res B 186:287

    Article  CAS  Google Scholar 

  69. Gelpey J, Elliott K, Camm D (2002) Advanced annealing for sub-130 nm junction formation. In: 201st electrochemical society meeting, symposium Q1, rapid thermal and other short-time processing technologies III, May 12–17, 2002, p 735

    Google Scholar 

  70. Peuse B, Miner G, Yam M, Elia C (1998) Advances in RTP temperature measurement and control. Mater Res Soc Symp Proc 525:71

    Article  CAS  Google Scholar 

  71. Singh R (1988) Rapid isothermal processing. J Appl Phys 63:R59–R114

    Article  CAS  Google Scholar 

  72. Nguyenphu B, Fiory AT (1999) Wafer temperature measurement in a rapid thermal processor with modulated lamp power. J Electron Mater 28:1376

    Article  CAS  Google Scholar 

  73. Hauf M, Balthasar H, Merkl C, Müller S, Streibel C (1999) Emissivity compensated wafer temperature measurement using intensity-modulated lamp light. In: Roozeboom F et al (eds) Advances in rapid thermal processing. Electrochemical Society, Pennington, NJ, pp 383–390

    Google Scholar 

  74. Schietinger C, Adams B, Yarling C (1991) Ripple technique: a novel non-contact wafer emissivity and temperature method for RTP. Mater Res Soc Symp Proc 224:23

    Article  Google Scholar 

  75. Saito S, Shishiguchi S, Mineji A, Matsuda T (1998) Ultra shallow junction formation by RTA at high temperature for short heating cycle time. Mater Res Soc Symp Proc 532:3

    Article  CAS  Google Scholar 

  76. Hebb J, Shajii A (1999) Temperature measurement, uniformity, and control in a furnace-based rapid thermal processing system. In: Roozeboom F et al (eds) Advances in rapid thermal processing. Electrochemical Society, Pennington, NJ, pp 375–382

    Google Scholar 

  77. Timans P, Sharangpani R, Thakhur RPS (2000) Rapid thermal processing. In: Nishi Y (ed) Handbook of semiconductor manufacturing technology. Decker, New York

    Google Scholar 

  78. Lau SS, Mayer JW, Tseng W (1980) Handbook of semiconductors. North-Holland, Amsterdam

    Google Scholar 

  79. Kannan VC, Casey D (1977) Two-step annealing of arsenic-implanted <111> silicon. Appl Phys Lett 31:721

    Article  CAS  Google Scholar 

  80. Michel AE, Rausch W, Ronsheim PA (1987) Implantation damage and the anomalous transient diffusion of ion-implanted boron. Appl Phys Lett 51:4487

    Article  Google Scholar 

  81. Sedwick TO, Michel AE, Deline VR, Cohen SA (1988) Transient boron diffusion in ion‐implanted crystalline and amorphous silicon. J Appl Phys 63:1452

    Article  Google Scholar 

  82. Fair RB (1990) Point defect charge-state effects on transient diffusion of dopants in Si. J Electrochem Soc 137:667

    Article  CAS  Google Scholar 

  83. Cowern NEB, Jansen KTF, Jos HFF (1990) Transient diffusion of Ion-implanted B in Si: dose, time, and matrix dependence of atomic and electrical profiles. J Appl Phys 68:6191

    Article  CAS  Google Scholar 

  84. Jaraiz M, Gilmer GH, Poate JM, de la Rubia TD (1996) Atomistic calculations of ion implantation in Si: point defect and transient enhanced diffusion phenomena. Appl Phys Lett 68:409

    Article  CAS  Google Scholar 

  85. Suzuki K (2003) Model for transient enhanced diffusion of ion-implanted boron, arsenic, and phosphorous over wide range of process conditions. Fujitsi Sci Technol J 39:138

    CAS  Google Scholar 

  86. Jones KS, Rozgonyi GA (1993) Extended defects from ion implantation and annealing. In: Fair RB (ed) Rapid thermal processing science and technology. Academic, Boston

    Google Scholar 

  87. Talwar S, Wang Y, Gelatos C (2000) Laser thermal processing (LTP) for fabrication of ultra-shallow, hyper-abrupt, highly activated junctions for deca-nanameter MOS transistors. Electrochemical Society Symposium Proceedings PV 2000-9 95

    Google Scholar 

  88. Tichy RS, Elliott K, McCoy S, Sing D (2001) Annealing of ultra-shallow implanted junctions using arc-lamp technology: achieving the 90 nm node. In: Proceedings of 9th international conference on advanced thermal processing of semiconductors – RTP 2001, pp 87–93

    Google Scholar 

  89. Talwar S, Markle D, Thompson M (2003) Junction scaling using lasers for thermal annealing. Solid State Technol 46:83

    CAS  Google Scholar 

  90. Borland JO, Matsuda T, Sakamoto K (2002) Shallow and abrupt junction formation: paradigm shift at 65-70 nm. Solid State Technol 45:79

    Google Scholar 

  91. Borland JO (2007) 32 nm node USJ implant and annealing options. 15th IEEE international conference on advanced thermal processing of semiconductors – RTP 2007, p 181

    Google Scholar 

  92. Mayer JW, Lau SS (1990) Electronic materials science. Integrated circuits in Si and GaAs. Macmillan, New York, pp 183–222

    Google Scholar 

  93. Simonton RS, Class W, Erokhin Y et al (2000) In: Nishi Y, Doehring R (eds) Handbook of semiconductor manufacturing technology. New York, Decker

    Google Scholar 

  94. Borland JO, Kawski J (1998) Triple well applications profit from MeV implant technology. Semicond Int 21:67

    Google Scholar 

  95. Venkatesan S, Lutze JW, Laga C, Taylor WJ (1995) Device drive current degradation observed with retrograde channel profiles. Tech Dig IEDM-95:419–422

    Google Scholar 

  96. Parrill TM, Namaroff MJ (1999) Ion implantation productivity for advanced applications. Eur Semicond 1999:44

    Google Scholar 

  97. Taur Y, Ning TH (1998) Fundamentals of modern VLSI devices. Cambridge University Press, New York, NY

    Google Scholar 

  98. Hori A, Mizuno B (1999) CMOS device technology toward 50 nm region-performance and drain architecture. IEDM Technical Digest International, Washington, DC, pp 641–644

    Google Scholar 

  99. Rodder M, Amerasekera A, Aur S, Chen IC (1994) A study of design/process dependence of 0.25 μm gate length CMOS. International electron devices meeting. Technical Digest International, San Francisco, CA, pp 71–74

    Google Scholar 

  100. Osborn CM (1990) Formation of silicided, ultra-shallow junctions using low thermal budget processing. J Electron Mater 19:67

    Article  Google Scholar 

  101. Schaber H, Criegern RV, Weitzel I (1985) Analysis of polycrystalline silicon diffusion sources by secondary ion mass spectrometry. J Appl Phys 58:4036

    Article  CAS  Google Scholar 

  102. Aoyame T, Suzuki K, Tashiro H et al (1995) Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride. J Appl Phys 77:417

    Article  Google Scholar 

  103. Murakami T, Kuroi T, Kawasaki Y et al (1997) Application of nitrogen implantation to ULSI. Nucl Instrum Methods Phys Res B 121:257

    Article  CAS  Google Scholar 

  104. Colombeau B, Smith AJ, Cowern N et al (2004) Electrical deactivation and diffusion of boron in preamorphized ultrashallow junctions: interstitial transport and F co-implant control. Technical Digest IEEE IEDM (2004) p. 971

    Google Scholar 

  105. Ota K, Shugihara K, Sayama H et al (2002) Novel locally strained channel technique for high performance 55 nm CMOS. Technical Digest IEEE IEDM (2002) p. 27

    Google Scholar 

  106. Hazdra P, Vobecky J, Galster N (2000) A new degree of freedom in diode optimization: arbitrary axial lifetime profiles by means of ion irradiation. ISPSD 2000, May 22–25, Toulouse, France

    Google Scholar 

  107. Hazdra P, Brand K, Rubes J, Vobecky J (2001) Local lifetime control by light ion irradiation: impact on blocking capability of power P-i-N diode. Microelectron J 32:449

    Article  CAS  Google Scholar 

  108. Hazdra P, Vobecky J, Brand K (2002) Optimum lifetime structuring in silicon power diodes by means of various irradiation techniques. Nucl Instrum Methods Phys Res B 186:414

    Article  CAS  Google Scholar 

  109. Nakano Y, Ishiko M, Tadano H (2002) Deep level centers in silicon introduced by high-energy He irradiation and subsequent annealing. J Vac Sci Technol B 20:379

    Article  CAS  Google Scholar 

  110. Hazdra P, Brand K, Vobecky J (2001) Effect of defects produced by MeV H and He ion implantation on characteristics of power silicon P-i-N diodes. In: Proceedings of 11th international conference on ion implantation technology 2000, IEEE Press, p 135

    Google Scholar 

  111. Hazdra P, Komarnitskyy V (2007) Local lifetime control in silicon power diode by ion irradiation: introduction and stability of shallow donors. IET Circuits Devices Syst 1:321–326

    Article  Google Scholar 

  112. Vobecky J, Hazdra P, Homola J (1996) Optimization of power diode characteristics by means of ion irradiation. IEEE Trans Electron Devices 43:2283

    Article  CAS  Google Scholar 

  113. Ronsisvalle C, Enea V, Abbate C (2011) Effects of back-side He irradiation on MOS-GTO performances. In: Proceedings of 23rd international symposium on power semiconductor devices and ICs (ISPSD) 2011, May 23–26, IEEE Press, San Diego, CA, pp 144–147

    Google Scholar 

  114. Deboy G, Marz M, Stengl JP et al (1998) A new generation of high voltage MOSFETs breaks the limit of silicon. Technical Digest IEDM 98, San Francisco, CA, p 683

    Google Scholar 

  115. Lorenz L, Deboy G, Knapp A, März M (1999) COOLMOS – a new milestone in high voltage power MOS. Proceedings of ISPSD 1999, Toronto, pp 3–10

    Google Scholar 

  116. Saggio M, Fagone D, Musumeci S (2000) MDmesh: innovative technology for high voltage power MOSFETs. Proceedings of ISPSD 2000, Toulouse, p 65

    Google Scholar 

  117. Meijer J, Burchard B, Ivanova K et al (2004) High-energy ion projection for deep ion implantation as a low cost high throughput alternative for subsequent epitaxy processes. J Vac Sci Technol B 22:152

    Article  CAS  Google Scholar 

  118. von Borany J, Friedrich M, Rüb M et al (2005) Application of ultra-high energy boron implantation for superjunction power (CoolMOS) devices. Nucl Instrum Methods Phys Res B 237:62

    Article  CAS  Google Scholar 

  119. Rüb M, Bär M, Deboy G et al (2004) 550V superjunction 3.9 Ohmmm2 transistor formed by 25 MeV masked boron implantation. Proceedings of ISPSD 2004, Kitakyushu, Japan, p 455

    Google Scholar 

  120. Schmidt B, Schubert D (1986) Siliciumsensoren. Akademie-Verlag, Berlin

    Google Scholar 

  121. Reichel H et al (1989) Halbleitersensoren: Prinzipien, Entwicklungsstand, Technologien, Anwendungsmöglichkeiten. Expert Verlag, Ehningen bei Böblingen

    Google Scholar 

  122. Sze SM (1994) Semiconductor sensors. Wiley, New York

    Google Scholar 

  123. Lutz G (1999) Semiconductor radiation detectors: device physics. Springer, Berlin

    Google Scholar 

  124. Hartmann F (2009) Evolution of silicon sensor technology in particle physics. STMP 231. Springer, Berlin

    Google Scholar 

  125. Spieler H (2005) Semiconductor detector systems. Oxford University Press, Oxford

    Book  Google Scholar 

  126. Lecrosnier D, Pelous G, Amouroux C et al (1975) Optimization of avalanche silicon photodiodes. Technical digest – international electron devices meeting, Washington, DC, p 595

    Google Scholar 

  127. Ripoche G, Harari J (2009) Avalanche photodiodes. In: Decoster D, Harari J (eds) Optoelectronic sensors. ISTE Ltd., London, pp 80–87

    Google Scholar 

  128. Kemmer J (1980) Fabrication of low noise silicon radiation detectors by the planar process. Nucl Instrum Methods 169:499

    Article  CAS  Google Scholar 

  129. Kemmer J, Burger P, Henck R, Heijne E (1982) Performance and applications of passivated ion-implanted silicon detector. IEEE Trans Nucl Sci NS-29:733

    Article  Google Scholar 

  130. Kemmer J (1990) Advanced concepts for semiconductor nuclear radiation detectors. Nucl Instrum Methods B 45:247

    Article  Google Scholar 

  131. Radeka V, Rahek V, Rescia P et al (1989) Implanted silicon JFET on completely depleted. IEEE Trans Electron Devices Lett ED-10:91

    Article  Google Scholar 

  132. Strüder L (1989) Recent developments in semiconductor detectors and on-chip electronics. Nucl Instrum Methods A 283:387

    Article  Google Scholar 

  133. Caywood JM, Mead CA, Mayer JW (1970) Influence of carrier diffusion effects on window thickness of semiconductor detectors. Nucl Instrum Methods 79:329

    Article  CAS  Google Scholar 

  134. Kanno I (1987) Models of formation and erosion of a plasma column in a silicon surface-barrier. Rev Sci Instrum 58:1926

    Article  CAS  Google Scholar 

  135. von Borany J, Schmidt B, Grötzschel R (1996) The application of high energy ion implantation for silicon radiation detectors. Nucl Instrum Methods Phys Res A 377:514

    Article  Google Scholar 

  136. von Borany J, Beyer V, Schmidt B, Schnabel B (2003) A novel silicon detector for energetic electrons with improved linearity characteristics. Microelectron Eng 67–68:140

    Article  CAS  Google Scholar 

  137. Deutscher M (1989) Ein Justierdetektor für Elektronenformstrahlen. Habilitations-schrift, Teil D, AdW der DDR

    Google Scholar 

  138. Seibt W, Sundström KE, Tove PA (1973) Charge collection in silicon detectors for strongly ionizing particles. Nucl Instrum Methods 113:317

    Article  CAS  Google Scholar 

  139. Finch EC, Asghar M, Forte M (1979) Plasma and recombination effects in the fission fragment pulse height defect in a surface barrier detector. Nucl Instrum Methods 163:467

    Article  CAS  Google Scholar 

  140. Hellings G, Mitard J, Eneman G et al (2009) High performance 70-nm germanium pMOSFETs with boron LDD implants. IEEE Electron Device Lett 30:88

    Article  CAS  Google Scholar 

  141. Jones R, Thomas S, Bharatan S et al (2002) Fabrication and modeling of gigahertz photodetectors in heteroepitaxial Ge-on-Si using a graded buffer layer deposition by low energy plasma enhanced CVD. Proceedings of international electron devices meeting (IEDM), 2002, p 793

    Google Scholar 

  142. Simoen E, Satta A, D’Amore A et al (2006) Ion-implantation issues in the formation of shallow junctions in germanium. Mater Sci Semicond Process 9:634

    Article  CAS  Google Scholar 

  143. Brunco DP, De Jaeger B, Eneman G et al (2008) Germanium MOSFET devices: advances in materials understanding, process development, and electrical performance. J Electrochem Soc 155:H552

    Article  CAS  Google Scholar 

  144. Satta A, Simoen E, Clarysse T et al (2005) Diffusion, activation, and recrystallization of boron implanted in preamorphized and crystalline germanium. Appl Phys Lett 87:172109

    Article  CAS  Google Scholar 

  145. Hellings G, Wuendisch C, Eneman G et al (2009) Implantation, diffusion, activation, and recrystallization of gallium implanted in preamorphized and crystalline germanium. Electrochem Solid State Lett 12:H417

    Article  CAS  Google Scholar 

  146. Chui CO, Kulig L, Moran J, Tsai W, Saraswat KC (2005) Germanium n-type shallow junction activation dependences. Appl Phys Lett 87:091909

    Article  CAS  Google Scholar 

  147. Posselt M, Schmidt B, Anwand W et al (2008) Implantation into preamorphized germanium and subsequent annealing: Solid phase epitaxial regrowth, P diffusion, and activation. J Vac Sci Technol B 26:430

    Article  CAS  Google Scholar 

  148. Wündisch C, Posselt M, Schmidt B et al (2009) Millisecond flash lamp annealing of shallow implanted layers in Ge. Appl Phys Lett 95:252107

    Article  CAS  Google Scholar 

  149. Satta A, Simoen E, Duffy R et al (2006) Diffusion, activation, and regrowth behavior of high dose P implants in Ge. Appl Phys Lett 88:162118

    Article  CAS  Google Scholar 

  150. Janssens T, Huyghebaert C, Vanhaeren D et al (2006) Heavy ion implantation in Ge: dramatic radiation induced morphology in Ge. J Vac Sci Technol B 24:510

    Article  CAS  Google Scholar 

  151. Darby BL, Yates BR, Rudawski NG et al (2011) Insights for void formation in ion-implanted Ge. Thin Solid Films 519:5962

    Article  CAS  Google Scholar 

  152. Kögler R, Mücklich A, Skorupa W et al (2007) Vacancies in high energy ion implanted SiGe. J Appl Phys 101:033508

    Article  CAS  Google Scholar 

  153. Holland OW, Appleton BR, Narayan J (1983) Ion implantation damage and annealing in germanium. J Appl Phys 54:2295

    Article  CAS  Google Scholar 

  154. Huber H, Assmann W, Karamian SA et al (1997) Void formation in Ge induced by high energy heavy ion irradiation. Nucl Instrum Methods Phys Res B 122:542

    Article  CAS  Google Scholar 

  155. Nitta W, Taniwaki M, Hayashi Y, Yoshiie T (2002) Formation of cellular defect structure on GaSb ion-implanted at low temperature. J Appl Phys 92:1799

    Article  CAS  Google Scholar 

  156. Romano L, Impellizzeri G, Tomasello MV et al (2010) Nanostructuring in Ge by self-ion implantation. J Appl Phys 107:084314

    Article  CAS  Google Scholar 

  157. Wilson IH (1982) The effects of self‐ion bombardment (30–500 keV) on the surface topography of single-crystal germanium. J Appl Phys 53:1698

    Article  CAS  Google Scholar 

  158. Ghaly M, Nordlund K, Averback RS (1999) Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Philos Mag A 79:795

    Article  CAS  Google Scholar 

  159. Kim JC, Cahill DG, Averback RS (2005) Surface defects created by 20 keV Xe ion irradiation of Ge(111). Surf Sci 574:175

    Article  CAS  Google Scholar 

  160. Herrmannsdoerfer T, Heera V, Ignatchik O et al (2009) Superconducting state in a gallium-doped germanium layer at Low temperatures. Phys Rev Lett 102:217003

    Article  CAS  Google Scholar 

  161. Zhou S, Bürger D, Mücklich A et al (2010) Hysteresis in the magnetotransport of manganese-doped germanium: evidence for carrier-mediated ferromagnetism. Phys Rev B 81:165204

    Article  CAS  Google Scholar 

  162. Sealy BJ (1988) Ion implantation doping of semiconductors. Int Mater Rev 33:38

    Article  CAS  Google Scholar 

  163. Wesch W, Götz G (1986) Rapid annealing of ion-implanted GaAs. Physica Status Solidi A 94:745

    Article  CAS  Google Scholar 

  164. Pearton SJ, Poate JM, Sette F et al (1987) Ion implantation in GaAs. Nucl Instrum Methods Phys Res B 19/20:369

    Article  Google Scholar 

  165. Dodadalapur A, Streetman BG (1990) Implantation in InP-the role of stoichiometric imbalances. Electrochem Soc Symp Proc 90–13:66

    Google Scholar 

  166. Rao MV (1992) Rapid thermal annealing of ion-implanted InP, InGaAs, and InSb. Proc SPIE 1595:108

    Article  CAS  Google Scholar 

  167. Pearton SJ, Chakrabarti UK (1992) Novel dry etch chemistries for InP and related compounds. In: Katz A (ed) Indium phosphide and related materials: processing, technology and devices. Artech House, Norwood, MA, pp 420–426

    Google Scholar 

  168. Rao MV (1993) Ion implantation in III–V compound semiconductors. Nucl Instrum Methods Phys Res B 79:645

    Article  Google Scholar 

  169. de Souza JP, Sadana DK (1992) Ion implantation in gallium arsenide MESFET technology. IEEE Trans Electron Devices ED-39:166

    Article  Google Scholar 

  170. Rao MV, Nadella RK, Holland OW (1992) Elevated temperature 3 MeV Si and 150 keV Ge implants in InP:Fe. J Appl Phys 71:126

    Article  CAS  Google Scholar 

  171. Rao MV, Nadella RK (1990) Be+/P+, Be+/Ar+, and Be+/N+ coimplantations into InP:Fe. J Appl Phys 67:1761

    Article  CAS  Google Scholar 

  172. Gill SS, Sealy BJ (1986) Review of rapid thermal annealing of ion implanted GaAs. J Electrochem Soc 133:2590

    Article  CAS  Google Scholar 

  173. Pearton SJ, Jalali B, Abernathy CR et al (1992) Isolation properties and experimental ranges of high energy ions in GaAs and InP. J Appl Phys 71:2663

    Article  CAS  Google Scholar 

  174. Vellanki J, Nadella RK, Rao MV (1993) Highly conductive buried n+ layers in lnP:Fe created by MeV energy Si, S, and Si/S implantation for application to microwave devices. J Electron Mater 22:73

    Article  CAS  Google Scholar 

  175. Pearton SJ, Zolper JC, Shul RJ, Ren F (1999) GaN: processing, defects, and devices. J Appl Phys 86:1

    Article  CAS  Google Scholar 

  176. Zolper JC (1997) Ion implantation in group III-nitride semiconductors: a tool for doping and defect studies. J Cryst Growth 178:157

    Article  CAS  Google Scholar 

  177. Wilson RG, Zavada JM, Cao XA et al (1999) Redistribution and activation of implanted S, Se, Te, Be, Mg, and C in GaN. J Vac Sci Technol A 17:1226

    Article  CAS  Google Scholar 

  178. Cao XA, Abernathy CR, Singh RK et al (1998) Ultrahigh Si+ implant activation efficiency in GaN using a high-temperature rapid thermal process system. Appl Phys Lett 73:229

    Article  CAS  Google Scholar 

  179. Kucheyev SO, Williams JS, Pearton SJ (2001) Ion implantation into GaN. Mater Sci Eng R Rep 33:51–107

    Article  Google Scholar 

  180. Cao XA, Pearton SJ, Dang GT (2000) Creation of high resistivity GaN by implantation of Ti, O, Fe, or Cr. J Appl Phys 87:1091

    Article  CAS  Google Scholar 

  181. Neudeck PG (1994) Progress towards high temperature, high power SiC devices. Institute of Physics Conference Series 141: Compound Semiconductors, pp 1–6

    Google Scholar 

  182. Rao MV (2003) Maturing ion-implantation technology and its device applications in SiC. Solid State Electron 47:213

    Article  CAS  Google Scholar 

  183. Choyke WJ, Matsunami H, Pensl G (2004) Silicon carbide recent major advances. Springer, Berlin

    Book  Google Scholar 

  184. Handy EM, Rao MV, Holland OW et al (2000) Al, B, and Ga ion-implantation doping of SiC. J Electron Mater 29:1340

    Article  CAS  Google Scholar 

  185. Capano MA, Ryu S, Melloch MR et al (1998) Dopant activation and surface morphology of ion implanted 4H- and 6H-silicon carbide. J Electron Mater 27:370

    Article  CAS  Google Scholar 

  186. Handy EM, Rao MV, Jones KA (1999) Effectiveness of AlN encapsulant in annealing ion-implanted SiC. J Appl Phys 86:746

    Article  CAS  Google Scholar 

  187. Wirth H, Panknin D, Skorupa W, Niemann E (1999) Efficient p-type doping of 6H-SiC: Flash-lamp annealing after aluminum implantation. Appl Phys Lett 74:979

    Article  CAS  Google Scholar 

  188. Reiss S, Heinig KH (1994) Ostwald ripening during ion beam synthesis – a computer simulation for inhomogeneous systems. Nucl Instrum Methods Phys Res B 84:229

    Article  CAS  Google Scholar 

  189. Goodrich FC, Rusanov AI (eds) (1981) The modern theory of capillarity. Akademie Verlag, Berlin

    Google Scholar 

  190. Ostwald W (1897) Studien über die Bildung fester Körper. 1. Abhandlung: “Übersättigung und Überkaltung”. Z Phys Chem 22:289

    CAS  Google Scholar 

  191. Lifshitz LM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35

    Article  Google Scholar 

  192. Wagner C (1961) Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z Electrochem 65:581

    CAS  Google Scholar 

  193. Reiss S, Weber R, Heinig KH, Skorupa W (1994) Experimental study and modeling of structure formation in buried layers at ion beam synthesis. Nucl Instrum Methods Phys Res B 89:337

    Article  CAS  Google Scholar 

  194. Strobel M (1999) Modeling and computer simulations of ion beam synthesis of nanostructures. Ph.D. dissertation, University of Technology, Dresden, Germany

    Google Scholar 

  195. Strobel M, Heinig KH, Möller W (2001) Three-dimensional domain growth on the size scale of the capillary length: effective growth exponent and comparative atomistic and mean-field simulations. Phys Rev B 64:245422

    Article  CAS  Google Scholar 

  196. Schmitz G, Haasen P (1992) Decomposition of an AlLi alloy – the early stages observed by HREM. Acta Metallurgica et Materialia 40:2209

    Article  CAS  Google Scholar 

  197. Calderon HA, Voorhees PW, Murray JL, Kostorz G (1994) Ostwald ripening in concentrated alloys. Acta Metallurgica et Materialia 42:991

    Article  CAS  Google Scholar 

  198. Mazzoldi P, Arnold GW, Battaglin G et al (1994) Peculiarities and application perspectives of metal-ion implants in glasses. Nucl Instrum Methods B 91:478

    Article  CAS  Google Scholar 

  199. Atwater HA, Shcheglov KV, Wong SS et al (1994) Ion beam synthesis of luminescent SI and GE nanocrystals in a silicon dioxide matrix. Mater Res Soc Symp Proc 316:409

    Article  CAS  Google Scholar 

  200. Mantl S (1992) Ion beam synthesis of epitaxial silicides: fabrication, characterization and applications. Mater Sci Rep 8:1

    Article  Google Scholar 

  201. Zuhr RA, Magruder RH, Anderson TA, Wittig JE (1994) Nanosize metal alloy particle formation in AG and CU sequentially implanted silica. Mater Res Soc Symp Proc 316:457

    Article  CAS  Google Scholar 

  202. Zhu JG, White CW, Budai JD et al (1995) Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices. J Appl Phys 78:4386

    Article  CAS  Google Scholar 

  203. White CW, Budai JD, Zhu JG et al (1995) Compound semiconductor nanocrystals formed by sequential ion implantation. Mater Res Soc Symp Proc 358:169

    Article  CAS  Google Scholar 

  204. White CW, Budai JD, Zhu JG et al (1996) Ion beam synthesis and stability of GaAs nanocrystals in silicon. Appl Phys Lett 68:2389

    Article  CAS  Google Scholar 

  205. Christoloveanu S (1989) Advanced silicon on insulator materials: processing, characterization and devices. In: Harbeke G, Schulz MJ (eds) Semiconductor silicon. Springer, Berlin, pp 223–249

    Chapter  Google Scholar 

  206. Colinge JP (1997) Silicon-on-insulator technology: materials to VLSI, 2nd edn. Kluwer, Boston, pp 32–44, Chapter 2

    Book  Google Scholar 

  207. Celler GK, Cristoloveanu S (2003) Frontiers of silicon-on-insulator. J Appl Phys 93:4955

    Article  CAS  Google Scholar 

  208. Reeson KJ (1987) Fabrication of buried layers of SiO2 and Si3N4 a using ion beam synthesis. Nucl Instrum Methods Phys Res B 19–20:269

    Article  Google Scholar 

  209. Hatzopoulos N, Bussmann U, Robinson AK, Hemment PLF (1991) Buried insulator formation by nitrogen implantation at elevated temperatures. Nucl Instrum Methods Phys Res B 55:734

    Article  Google Scholar 

  210. Zhang E, Yi W, Chen J et al (2005) Research on the effect of nitrogen implantation doses on the structure of separation by implantation of oxygen and nitrogen. Smart Mater Struct 14:N42

    Article  CAS  Google Scholar 

  211. Maydell-Ondrusz EA, Wilson IH (1984) A model for the evolution of implanted oxygen profiles in silicon. Thin Solid Films 114:357

    Article  CAS  Google Scholar 

  212. Jäger HU, Hensel E, Kreissig U et al (1985) A model for the oxidation of silicon by high dose oxygen implantation. Thin Solid Films 123:159

    Article  Google Scholar 

  213. Jäger HU (1986) Model investigations of the oxidation of silicon by high dose implantation. Nucl Instrum Methods Phys Res B 15:748

    Article  Google Scholar 

  214. Jäger HU (1987) Improved modeling of oxygen depth profiles in high dose oxygen-implanted silicon. Phys Stat Sol (a) 103:K75

    Article  Google Scholar 

  215. Nakashima S, Katayama T, Miyamura Y et al (1994) Thickness increment of buried oxide in a SIMOX wafer by high-temperature oxidation. In: Proceedings of IEEE International SOI Conference (1994), pp 71–72

    Google Scholar 

  216. Kawamura K, Deai H, Morikawa Y et al (1996) Gate oxide integrity on ITOX-SIMOX wafers. In: Proceedings of IEEE International SOI Conference (1996), pp 162–163

    Google Scholar 

  217. Maszara WP, Bennett J, Boden T et al (1997) Low dose SIMOX and impact of ITOX process on quality of SOI film. In: Proceedings of IEEE International SOI Conference (1997) pp 18–19

    Google Scholar 

  218. Dong Y, Chen M, Chen J et al (2004) Patterned buried oxide layers under a single MOSFET to improve the device performance. Semicond Sci Technol 19:L25

    Article  CAS  Google Scholar 

  219. White AE, Short KT, Dynes RC et al (1987) Mesotaxy: single-crystal growth of buried CoSi2 layers. Appl Phys Lett 50:95

    Article  CAS  Google Scholar 

  220. White AE, Short KT (1988) Synthesis of buried oxide and silicide layers with ion beams. Science 241:930

    Article  CAS  Google Scholar 

  221. White AE, Short KT, Dynes RC et al (1989) Mesotaxy: synthesis of buried single-crystal silicide layers by implantation. Nucl Instrum Methods Phys Res B 39:253

    Article  Google Scholar 

  222. Mantl S, Jebasinski R, Hartmann D (1991) The effect of dose on the growth of buried CoSi2 layers in (111) and (100) Si produced by ion implantation. Nucl Instrum Methods Phys Res B 59–60:666

    Article  Google Scholar 

  223. Van Ommen A, Bulle-Lieuwma CWT, Ottenheim JJM, Theunissen AML (1990) Ion beam synthesis of heteroepitaxial Si/CoSi2/Si structures. J Appl Phys 67:1767

    Article  Google Scholar 

  224. Hensel JC, Tung RT, Poate JM, Unterwald FC (1984) Electrical transport properties of CoSi2 and NiSi2 thin films. Appl Phys Lett 44:913

    Article  CAS  Google Scholar 

  225. Vanheilemont J, Bender H, Wu MF et al (1993) Implantation temperature dependent distribution of NiSi2 formed by ion beam synthesis in silicon. Appl Phys Lett 62:2795

    Article  Google Scholar 

  226. Hsu JY, Liang JH (2005) An investigation of annealing effect on forming nickel disilicide by ion beam synthesis. Nucl Instrum Methods Phys Res B 241:543

    Article  CAS  Google Scholar 

  227. Liang JH, Chao DS (2001) Formation of tungsten silicide films by ion beam synthesis. Surf CoatTechnol 140:116

    Article  CAS  Google Scholar 

  228. White AE, Short KT, Maex K et al (1991) Exploiting Si/CoSi2/Si heterostructures grown by mesotaxy. Nucl Instrum Methods Phys Res B 59–60:693

    Article  Google Scholar 

  229. Radermacher K, Mantl S, Dieker C, Lüth H (1991) Ion beam synthesis of buried α-FeSi2 and β-FeSi2 layers. Appl Phys Lett 59:2145

    Article  CAS  Google Scholar 

  230. Homewood KP, Reeson KJ, Gwilliam RM et al (2001) Ion beam synthesized silicides: growth, characterization and devices. Thin Solid Films 381:188

    Article  CAS  Google Scholar 

  231. Golanski A, Christie WH, Galloway MD et al (1991) Ion beam induced diffusion and crystallization in high-dose Er implanted Si. Nucl Instrum Methods Phys Res B 59–60:444

    Article  Google Scholar 

  232. Hogg SM, Vantomme A, Wu MF, Langouche G (2000) Electrical properties of rare earth silicides produced by channeled ion beam synthesis. Microelectron Eng 50:211

    Article  CAS  Google Scholar 

  233. Bischoff L, Heinig KH, Teichert J, Skorupa W (1996) Submicron CoSi2 structures fabricated by focused ion beam implantation and local flash lamp melting. Nucl Instrum Methods Phys Res B 112:201

    Article  CAS  Google Scholar 

  234. Hausmann S, Bischoff L, Teichert J (1998) Dose rate effects in focused ion beam synthesis of cobalt disilicide. Appl Phys Lett 72:2719

    Article  CAS  Google Scholar 

  235. Akhmadaliev C, Schmidt B, Bischoff L (2006) Defect induced formation of CoSi2 nanowires by focused ion beam synthesis. Appl Phys Lett 89:223129

    Article  CAS  Google Scholar 

  236. Heinig KH (1984) Effects of transient local melting on semiconductor surfaces. In: Proceedings of international conference on energy pulse modification of semiconductors and related materials, EPM ’84. Dresden, p 265

    Google Scholar 

  237. Calvo P, Claverie A, Cherkashin N et al (2004) Thermal evolution of 113 defects in silicon: transformation against dissolution. Nucl Instrum Methods Phys Res B 216:173

    Article  CAS  Google Scholar 

  238. Buchal C, Withrow SP, White CW, Poker DB (1994) Ion implantation of optical materials. Annu Rev Mater Sci 24:125

    Article  CAS  Google Scholar 

  239. Meldrum A, Haglund RF, Boatner LA, White CW (2001) Nanocomposite materials formed by ion implantation. Adv Mater 13:1431

    Article  CAS  Google Scholar 

  240. Heinig K, Müller T, Schmidt B et al (2003) Interfaces under ion irradiation: growth and taming of nanostructures. Appl Phys A Mater Sci Process 77:17

    Article  CAS  Google Scholar 

  241. Skorupa W, Rebohle L, Gebel T (2003) Group-IV nanocluster formation by ion-beam synthesis. Appl Phys A Mater Sci Process 76:1049

    Article  CAS  Google Scholar 

  242. Mazzoldi P, Mattei G (2007) Some aspects of ion implantation technique in nanostructured materials. Phys Stat Sol (a) 204:621

    Article  CAS  Google Scholar 

  243. Flytzanis C, Hache F, Klein MC et al (1991) Nonlinear optics in composite materials. In: Wolf E (ed) Progress in optics, vol 29. North-Holland, Amsterdam, pp 321–411

    Google Scholar 

  244. Magruder RH, Kinser DL, Wittig JE, Zuhr RA (1992) Structure property relationships of nanometer-size metal clusters in glasses. Proc SPIE 1761:180

    Article  Google Scholar 

  245. Magruder RH, Haglund RF, Yang L et al (1994) Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica. J Appl Phys 76:708

    Article  CAS  Google Scholar 

  246. Hosono H, Fukushima H, Abe Y et al (1992) Cross-sectional TEM observation of copper-implanted SiO2 glass. J Non Cryst Sol 143:157

    Article  CAS  Google Scholar 

  247. Matsunami N, Hosono H (1993) Colloid formation effects on depth profile of implanted Ag in SiO2 glass. Appl Phys Lett 63:2050

    Article  CAS  Google Scholar 

  248. Matsumi N, Hosono H (1993) Anomalous fringe pattern of Ag colloid in phosphate glasses by implantation. Nucl Instrum Methods Phys Res B 80/81:1233

    Article  Google Scholar 

  249. Mazzoldi P, Tramontin L, Boscolo-Boscoletto A et al (1993) Substrate effects in silver-implanted glasses. Nucl Instrum Methods Phys Res B 80/81:1192

    Article  Google Scholar 

  250. Magruder RH, Yang L, Huglund RF et al (1993) Optical properties of gold nanocluster composites formed by deep ion implantation in silica. Appl Phys Lett 62:1730

    Article  CAS  Google Scholar 

  251. White CW, Zhou DS, Budai JD, Zuhr RA (1994) Colloidal Au nanoclusters formed in fused silica by MeV ion implantation and annealing. Mater Res Soc Symp Proc 316:499

    Article  CAS  Google Scholar 

  252. Strobel M, Heinig K, Möller W (1999) Ion beam synthesis of gold nanoclusters in SiO2: computer simulations versus experiments. Nucl Instrum Methods Phys Res B 147:343

    Article  CAS  Google Scholar 

  253. Fukumi K, Chayahara A, Kadono K et al (1994) Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties. J Appl Phys 75:3075

    Article  CAS  Google Scholar 

  254. KimerIing LC, Kolenbrander KD, Michel J, Palm J (1996) Light emission from silicon. Solid State Phys 50:333

    Article  Google Scholar 

  255. Walters RJ, Kalkman J, Polman A et al (2006) Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2. Phys Rev B 73:132302

    Article  CAS  Google Scholar 

  256. Pavesi L, Dal Negro L, Mazzoleni C et al (2000) Optical gain in silicon nanocrystals. Nature 408:440

    Article  CAS  Google Scholar 

  257. Conibeer G, Green M, Corkish R et al (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511–512:654

    Article  CAS  Google Scholar 

  258. Alfond TL, Theodore ND (1994) Backscattering and electron microscopy study of mega‐electron volt gold implantation into silicon. J Appl Phys 76:7265

    Article  Google Scholar 

  259. Wendler E, Herrmann U, Wesch W, Dunken HH (1996) Structural changes and Si redistribution in Si+ implanted silica glass. Nucl Instrum Methods Phys Res B 116:332

    Article  CAS  Google Scholar 

  260. Zhu JG, White CW, Budai JD, Withrow SP, Chenb Y (1995) Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices. J Appl Phys 78:4386

    Article  CAS  Google Scholar 

  261. von Borany J, Grötzschel R, Heinig KH et al (1997) Multimodal impurity redistribution and nanocluster formation in Ge implanted silicon dioxide films. Appl Phys Lett 71:3215

    Article  Google Scholar 

  262. Heinig KH, Schmidt B, Markwitz A et al (1999) Precipitation, ripening and chemical effects during annealing of Ge+ implanted SiO2 layers. Nucl Instrum Methods Phys Res B 148:969

    Article  CAS  Google Scholar 

  263. Markwitz A, Schmidt B, Matz W et al (1998) Microstructural investigation of ion beam synthesised germanium nanoclusters embedded in SiO2 layers. Nucl Instrum Methods Phys Res B 142:338

    Article  CAS  Google Scholar 

  264. Oswald S, Schmidt B, Heinig KH (2000) XPS investigation with factor analysis for the study of Ge clustering in SiO2. Surf Interface Anal 29:249

    Article  CAS  Google Scholar 

  265. Borodin VA, Heinig KH, Schmidt B (1998) Modeling of Ge nanocluster evolution in ion-implanted SiO2 layer. Nucl Instrum Methods Phys Res B 147:286

    Article  Google Scholar 

  266. Tiwari S, Rana F, Chan K et al (1995) Volatile and non-volatile memories in silicon with nano-crystal storage. IEEE International Electron Devices Meeting Technical Digest, p 521

    Google Scholar 

  267. Devine RAB (1994) Macroscopic and microscopic effects of radiation in amorphous SiO2. Nucl Instrum Methods Phys Res B 91:378

    Article  CAS  Google Scholar 

  268. Schmidt B, Grambole D, Herrmann F (2002) Impact of ambient atmosphere on as-implanted amorphous insulating layers. Nucl Instrum Methods Phys Res B 191:482

    Article  CAS  Google Scholar 

  269. Claverie A, Bonafos C, Ben Assayag G et al (2006) Materials science issues for the fabrication of nanocrystal memory devices by ultra low energy ion implantation. Defect Diffus Forum 258–260:531

    Article  Google Scholar 

  270. Müller T, Heinig KH, Möller W (2002) Materials science issues for the fabrication of nanocrystal memory devices by ultra low energy ion implantation. Appl Phys Lett 81:3049

    Article  CAS  Google Scholar 

  271. Müller T, Heinig KH, Möller W et al (2004) Multi-dot floating-gates for nonvolatile semiconductor memories: their ion beam synthesis and morphology. Appl Phys Lett 85:2373

    Article  CAS  Google Scholar 

  272. Brongersma ML, Polman A, Min MS et al (1998) Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Appl Phys Lett 72:2577

    Article  CAS  Google Scholar 

  273. Skorupa W, Rebohle L, Gebel T (2003) Group-IV nanocluster formation by ion-beam synthesis. Appl Phys A 76:1049

    Article  CAS  Google Scholar 

  274. Tiwari S, Rana F, Hanafi H et al (1996) A silicon nanocrystals based memory. Appl Phys Lett 68:1377

    Article  CAS  Google Scholar 

  275. Fu Y, Dutta A, Willander M, Oda S (2000) Carrier conduction in a Si-nanocrystal-based single-electron transistor – I. Effect of gate bias. Superlattices Microstruct 28:177

    Article  CAS  Google Scholar 

  276. Lopez M, Garrido B, Bonafos C (2001) Model for efficient visible emission from Si nanocrystals ion beam synthesized in SiO2. Nucl Instrum Methods Phys Res B 178:89

    Article  CAS  Google Scholar 

  277. Iwayama TS, Hama T, Hole DE, Boyd IW (2002) Optical and structural properties of encapsulated Si nanocrystals formed in SiO2 by ion implantation. Surf Coat Technol 158–159:712

    Article  Google Scholar 

  278. Cheylan S, Elliman RG (1999) The effect of ion dose and annealing ambient on room temperature photoluminescence from Si nanocrystals in SiO2. Nucl Instrum Methods Phys Res B 148:986

    Article  CAS  Google Scholar 

  279. Bonafos C, Columbeau B, Altibelli A et al (2001) Kinetic study of group IV nanoparticles ion beam synthesized in SiO2. Nucl Instrum Methods Phys Res B 178:17

    Article  CAS  Google Scholar 

  280. Linnros J, Lalic N, Galeckas A, Grivickas V (1999) Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2. J Appl Phys 86:6128

    Article  CAS  Google Scholar 

  281. Kik PG, Brongersma ML, Polman A (2000) Strong exciton-erbium coupling in Si nano-crystal-doped SiO2. Appl Phys Lett 76:2325

    Article  CAS  Google Scholar 

  282. Kik PG, Polman A (2000) Exciton–erbium interactions in Si nanocrystal-doped SiO2. J Appl Phys 88:1992

    Article  CAS  Google Scholar 

  283. Kik PG, Polman A (2001) Exciton–erbium energy transfer in Si nanocrystal-doped SiO2. Mater Sci Eng B 81:3

    Article  Google Scholar 

  284. Polman A (2002) Photonic materials: teaching silicon new tricks. Nat Mater 1:10

    Article  CAS  Google Scholar 

  285. Koshida N (ed) (2006) Device applications of silicon nanocrystals and nanostructures. Springer, Berlin

    Google Scholar 

  286. Pavesi L, Turan R (2010) Silicon nanocrystals: fundamentals, sythesis and applications. Wiley-VCH, Weinheim

    Google Scholar 

  287. von Borany J, Gebel T, Stegemann KH (2002) Memory properties of Si+ implanted gate oxides: from MOS capacitors to nvSRAM. Solid State Electron 46:1729

    Article  Google Scholar 

  288. Normand P, Kapetanakis E, Dimitrakis P et al (2003) Effect of annealing environment on the memory properties of thin oxides with embedded Si nanocrystals obtained by low-energy ion-beam synthesis. Appl Phys Lett 83:168

    Article  CAS  Google Scholar 

  289. Dimitrakis P, Kapetanakis E, Tsoukalas D et al (2004) Silicon nanocrystal memory devices obtained by ultra-low-energy ion-beam synthesis. Solid State Electron 48:1511

    Article  CAS  Google Scholar 

  290. Normand P, Kapetanakis E, Dimitrakis P et al (2004) Nanocrystals manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory applications. Nucl Instrum Methods Phys Res B 216:228

    Article  CAS  Google Scholar 

  291. Beyer V, von Borany J, Klimenkov M, Müller T (2009) Current-voltage characteristics of metal-oxide-semiconductor devices containing Ge or Si nanocrystals in thin gate oxides. J Appl Phys 106:064505

    Article  CAS  Google Scholar 

  292. Compagnoni CM, Ielmini D, Spinelli AS (2003) Study of data retention for nanocrystal Flash memories. In: Proceedings of the 41st annual international reliability physics symposium, pp 506–512

    Google Scholar 

  293. Tiwari S, Wahl JA, Silva H et al (2000) Small silicon memories: confinement, single-electron, and interface state considerations. Appl Phys A 71:403

    Article  Google Scholar 

  294. Normand P, Dimitrakis P, Kapetanakis E et al (2004) Processing issues in silicon nanocrystal manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory applications. Microelectron Eng 73–74:730

    Article  Google Scholar 

  295. Carrada M, Cherkashin N, Bonafos C et al (2003) Effect of ion energy and dose on the positioning of 2D-arrays of Si nanocrystals ion beam synthesised in thin SiO2 layers. Mater Sci Eng B 101:204

    Article  CAS  Google Scholar 

  296. Schmidt B, Heinig KH, Röntzsch L et al (2006) Ion irradiation through SiO2/Si interfaces: non-conventional fabrication of Si nanocrystals for memory applications. Nucl Instrum Methods Phys Res B 242:146

    Article  CAS  Google Scholar 

  297. von Borany J, Grötzschel R, Heinig KH et al (1999) The formation of narrow nanocluster bands in Ge-implanted SiO2-layers. Solid State Electron 43:1159

    Article  Google Scholar 

  298. Heinig KH, Müller T, Schmidt B, Strobel M, Möller W (2003) Interfaces under ion irradiation: growth and taming of nanostructures. Appl Phys A 77:17

    Article  CAS  Google Scholar 

  299. Heinig KH, Schmidt B, Strobel M, Bernas H (2001) inverse ostwald ripening and self-organization of nanoclusters due to ion irradiation. Mater Res Soc Symp Proc 650:R9.6/O14.6

    Article  Google Scholar 

  300. Schmidt B, Heinig KH, Mücklich A (2001) Evolution of ion beam synthesized Au nanoclusters in SiO2 under ion irradiation. Mater Soc Symp Proc 647:O11.20

    Article  Google Scholar 

  301. Röntzsch L, Heinig KH, Schmidt B (2004) Experimental evidence of Si nanocluster δ-layer formation in buried and thin SiO2 films induced by ion irradiation. Mater Sci Semicond Process 7:357

    Article  CAS  Google Scholar 

  302. Röntzsch L, Heinig KH, Schmidt B et al (2005) Direct evidence of self-aligned Si nanocrystals formed by ion irradiation of Si/SiO2 interfaces. Phys Stat Sol (a) 202:R170

    Article  CAS  Google Scholar 

  303. Bruel M (1995) Silicon on insulator material technology. Electron Lett 31:1201

    Article  CAS  Google Scholar 

  304. Aspar B, Bruel M, Moriceau H (1997) Basic mechanisms involved in the Smart-Cut® process. Microelectron Eng 36:233

    Article  CAS  Google Scholar 

  305. Bruel M (1996) Application of hydrogen ion beams to Silicon on Insulator material technology. Nucl Instrum Methods Phys Res B 108:313

    Article  CAS  Google Scholar 

  306. Tong QY, Gösele U (1999) Semiconductor wafer bonding: science and technology. Wiley, New York

    Google Scholar 

  307. Bruel M, Aspar B, Auberton-Herve AJ (1997) Smart-Cut: a new silicon on insulator material technology based on hydrogen implantation and wafer bonding. Jpn J Appl Phys 36:1636

    Article  CAS  Google Scholar 

  308. Aspar B, Lagahe C, Moriceau H et al (1998) Kinetics of splitting in the Smart-CutR process. Proc IEEE Int SOI Conf 1998:137–138

    Google Scholar 

  309. Nastasi M, Mayer JW (2006) Ion implantation and synthesis of materials. Springer, Berlin, p 152

    Book  Google Scholar 

  310. Tesmer JR, Nastasi M (eds) (1995) Handbook of modern ion beam analysis. Materials Research Society, Pittsburgh, PA

    Google Scholar 

  311. Di Cioccio L, Leitec Y, Letertre F et al (1996) Silicon carbide on insulator formation using the Smart Cut process. Electron Lett 32:1144

    Article  Google Scholar 

  312. Akatsu T, Deguet C, Sanchez L et al (2006) Germanium-on-insulator (GeOI) substrates – a novel engineered substrate for future high performance devices. Mater Sci Semicond Process 9:444

    Article  CAS  Google Scholar 

  313. Jalaguier E, Aspar B, Pocas S et al (1998) Transfer of 3 in GaAs film on silicon substrate by proton implantation process. Electron Lett 34:408

    Article  CAS  Google Scholar 

  314. Tauzin A, Akatsu T, Rabarot M et al (2005) Transfers of 2-inch GaN films onto sapphire substrates using Smart CutTM technology. Electron Lett 41:668

    Article  CAS  Google Scholar 

  315. Moriceau H, Fournel F, Aspar B et al (2003) New layer transfers obtained by the Smart Cut process. J Electron Mater 32:829

    Article  CAS  Google Scholar 

  316. Izuhara T, Gheorma IL, Osgood RM et al (2003) Single-crystal barium titanate thin films by ion slicing. Appl Phys Lett 82:616

    Article  CAS  Google Scholar 

  317. Carter G (2001) The physics and applications of ion beam erosion. J Phys D Appl Phys 34:R1

    Article  CAS  Google Scholar 

  318. Ziberi B, Frost F, Höche T, Rauschenbach B (2005) Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: experiment and theory. Phys Rev B 72:235310

    Article  CAS  Google Scholar 

  319. Ziberi B, Frost F, Rauschenbach B (2006) Formation of large-area nanostructures on Si and Ge surfaces during low energy ion beam erosion. J Vac Sci Technol A 24:1344

    Article  CAS  Google Scholar 

  320. Keller A, Facsko S, Möller W (2009) The morphology of amorphous SiO2 surfaces during low energy ion sputtering. J Phys Condens Matter 21:495305

    Article  CAS  Google Scholar 

  321. Facsko S, Dekorsy T, Koerdt C et al (1999) Formation of ordered nanoscale semiconductor dots by ion sputtering. Science 285:1551

    Article  CAS  Google Scholar 

  322. Carter G, Nobes MJ, Paton F et al (1977) Ion bombardment induced ripple topography on amorphous solids. Radiat Eff Defects Solids 33:65

    Article  CAS  Google Scholar 

  323. Chan WL, Chason E (2007) Making waves: kinetic processes controlling surface evolution during low energy ion sputtering. J Appl Phys 101:121301

    Article  CAS  Google Scholar 

  324. Brown AD, Erlebacher J (2005) Temperature and fluence effects on the evolution of regular surface morphologies on ion-sputtered Si(111). Phys Rev B 72:075350

    Article  CAS  Google Scholar 

  325. Ozaydin G, Ozcan AS, Wang YY (2005) Real-time X-ray studies of Mo-seeded Si nanodot formation during ion bombardment. Appl Phys Lett 87:163104

    Article  CAS  Google Scholar 

  326. Zhou J, Facsko S, Lu M, Möller W (2011) Nanopatterning of Si surfaces by normal incident ion erosion: influence of iron incorporation on surface morphology evolution. J Appl Phys 109:104315

    Article  CAS  Google Scholar 

  327. Macko S, Frost F, Ziberi B et al (2010) Is keV ion-induced pattern formation on Si(001) caused by metal impurities? Nanotechnology 21:085301

    Article  CAS  Google Scholar 

  328. Ziberi B, Frost F, Tartz M (2008) Ripple rotation, pattern transitions, and long range ordered dots on silicon by ion beam erosion. Appl Phys Lett 92:063102

    Article  CAS  Google Scholar 

  329. Bischoff L, Pilz W, Schmidt B (2011) Amorphous solid foam structures on germanium by heavy ion irradiation. Appl Phys A 104:1153

    Article  CAS  Google Scholar 

  330. Bischoff L, Heinig KH, Schmidt B et al (2012) Self-organization of Ge nanopattern under erosion with heavy Bi monomer and cluster ions. Nucl Instrum Methods Phys Res B 272:198–201

    Article  CAS  Google Scholar 

  331. Bradley RM, Harper JME (1988) Theory of ripple topography induced by ion bombardment. J Vac Sci Technol A 6:2390

    Article  CAS  Google Scholar 

  332. Sigmund P (1973) A mechanism of surface micro-roughening by ion bombardment. J Mater Sci 8:1545

    Article  CAS  Google Scholar 

  333. Cuerno R, Barabasi AL (1995) Dynamic scaling of ion-sputtered surfaces. Phys Rev Lett 74:4746

    Article  CAS  Google Scholar 

  334. Makeev MA, Barabasi AL (1997) Ion-induced effective surface diffusion in ion sputtering. Appl Phys Lett 71:2800

    Article  CAS  Google Scholar 

  335. Carter G, Vishnyakov V (1996) Roughening and ripple instabilities on ion-bombarded Si. Phys Rev B 54:17647

    Article  CAS  Google Scholar 

  336. Makeev MA, Cuerno R, Barabasi AL (2002) Morphology of ion-sputtered surfaces. Nucl Instrum Methods Phys Res B 197:185

    Article  CAS  Google Scholar 

  337. Munoz-Garcia J, Castro M, Cuerno R (2006) Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering. Phys Rev Lett 96:086101

    Article  CAS  Google Scholar 

  338. Chason E, Chan WL (2009) Kinetic Monte Carlo simulations compared with continuum models and experimental properties of pattern formation during ion beam sputtering. J Phys Condens Matter 21:224016

    Article  CAS  Google Scholar 

  339. Kalyanasundaram N, Freund JB, Johnson HB (2009) A multiscale crater function model for ion-induced pattern formation in silicon. J Phys Condens Matter 21:224018

    Article  CAS  Google Scholar 

  340. Liedke MO, Liedke B, Keller A (2007) Induced anisotropies in exchange-coupled systems on rippled substrates. Phys Rev B 75:220407(R)

    Article  Google Scholar 

  341. Oates TWH, Keller A, Noda S, Facsko S (2008) Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates. Appl Phys Lett 93:063106

    Article  CAS  Google Scholar 

  342. Toulemonde M, Dufour C, Wang Z, Paumier E (1996) Atomic and cluster ion bombardment in the electronic stopping power regime: a thermal spike description. Nucl Instrum Methods Phys Res B 112:26

    Article  CAS  Google Scholar 

  343. Toulemonde M, Costantini JM, Dufour C (1996) Track creation in SiO2 and BaFe12O19 by swift heavy ions: a thermal spike description. Nucl Instrum Methods Phys Res B 116:37

    Article  CAS  Google Scholar 

  344. Snoeks E, van Blaaderen A, van Dillen T et al (2000) Colloidal ellipsoids with continuously variable shape. Adv Mater 12:1511

    Article  CAS  Google Scholar 

  345. Vossen DLJ, de Dood MJA, van Dillen T et al (2000) Novel method for solution growth of thin silica films from tetraethoxysilane. Adv Mater 12:1434

    Article  CAS  Google Scholar 

  346. Snoeks E, van Blaaderen A, van Dillen T et al (2001) Colloidal assemblies modified by ion irradiation. Nucl Instrum Methods Phys Res B 178:62

    Article  CAS  Google Scholar 

  347. van Dillen T, Polman A, van Kats CM, van Blaaderen A (2003) Ion beam-induced anisotropic plastic deformation at 300 keV. Appl Phys Lett 83:4315

    Article  CAS  Google Scholar 

  348. Trinkaus H, Ryazanov AI (1995) Viscoelastic model for the plastic flow of amorphous solids under energetic ion bombardment. Phys Rev Lett 74:5072

    Article  CAS  Google Scholar 

  349. Klaumünzer S (2004) Ion hammering of silica colloids. Nucl Instrum Methods Phys Res B 215:345

    Article  CAS  Google Scholar 

  350. van Dillen T, van Blaaderen A, Polman A (2004) Shaping colloidal assemblies. Mater Today 7:40

    Article  Google Scholar 

  351. Roorda S, van Dillen T, Polman A et al (2004) Aligned gold nanorods in silica made by ion irradiation of core–shell colloidal particles. Adv Mater 16:235

    Article  CAS  Google Scholar 

  352. Penninkhof JJ, van Dillen T, Roorda S et al (2006) Anisotropic deformation of metallo-dielectric core–shell colloids under MeV ion irradiation. Nucl Instrum Methods Phys Res B 242:523

    Article  CAS  Google Scholar 

  353. D’Orleans C, Stoquert JP, Cerruti C et al (2003) Anisotropy of Co nanoparticles induced by swift heavy ions. Phys Rev B 67:220101(R)

    Article  CAS  Google Scholar 

  354. Giulian R, Kluth P, Araujo LL et al (2008) Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation. Phys Rev B 78:125413

    Article  CAS  Google Scholar 

  355. Penninkhof JJ, Polman A, Sweatlock LA et al (2003) Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass. Appl Phys Lett 83:4137

    Article  CAS  Google Scholar 

  356. Mishra YK, Singh F, Avasthi DK et al (2007) Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation. Appl Phys Lett 91:063103

    Article  CAS  Google Scholar 

  357. Dawi EA, Rizza G, Mink MP et al (2009) Ion beam shaping of Au nanoparticles in silica: particle size and concentration dependence. J Appl Phys 105:074305

    Article  CAS  Google Scholar 

  358. Dawi EA, Vredenberg AM, Rizza G, Toulemonde M (2011) Ion-induced elongation of gold nanoparticles in silica by irradiation with Ag and Cu swift heavy ions: track radius and energy loss threshold. Nanotechnology 22:215607

    Article  CAS  Google Scholar 

  359. Schmidt B, Mücklich A, Röntzsch L, Heinig KH (2007) How do high energy heavy ions shape Ge nanoparticles embedded in SiO2? Nucl Instrum Methods Phys Res B 257:30

    Article  CAS  Google Scholar 

  360. Schmidt B, Heinig KH, Mücklich A, Akhmadaliev C (2009) Swift-heavy-ion-induced shaping of spherical Ge nanoparticles into disks and rods. Nucl Instrum Methods Phys Res B 267:1345

    Article  CAS  Google Scholar 

  361. Dearnaley G (1969) Ion bombardment and implantation. Rep Prog Phys 32:405

    Article  Google Scholar 

  362. Ashworth V, Grant WA, Procter RPM (1982) Ion implantation into metals. Franklin Book Co., Elkins Park, PA

    Google Scholar 

  363. Conrad JR, Radtke JL, Dodd RA et al (1987) Ion bombardment and implantation. J Appl Phys 62:4591

    Article  CAS  Google Scholar 

  364. Dearnaley G (1983) Applications of ion implantation in metals. Thin Solid Films 107:315

    Article  CAS  Google Scholar 

  365. Picraux ST (1984) Ion implantation in metals. Annu Rev Mater Sci 14:335

    Article  CAS  Google Scholar 

  366. Dimigen H, Kobs K, Leutenecker R et al (1985) Wear resistance of nitrogen-implanted steels. Mater Sci Eng 69:181

    Article  CAS  Google Scholar 

  367. Dearnaley G (1994) Historical perspective of metal implantation. Surf CoatTechnol 65:1

    Article  CAS  Google Scholar 

  368. Dearnaley G (1990) Ion beam modification of metals. Nucl Instrum Methods Phys Res B 50:358

    Article  Google Scholar 

  369. Hirvonen JK (1989) Ion beam processing for surface modification. Annu Rev Mater Sci 19:401

    Article  CAS  Google Scholar 

  370. Kliauga AM, Pohl M, Klaffke D (1998) A comparison of the friction and reciprocating wear behaviour between an austenitic (X 2 CrNiMo 17 13 2) and a ferritic (X 1 CrNiMoNb 28 4 2) stainless steel after nitrogen ion implantation. Surf CoatTechnol 102:237

    Article  CAS  Google Scholar 

  371. Thorwarth G, Mändl S, Rauschenbach B (2000) Plasma immersion ion implantation of cold-work steel. Surf CoatTechnol 125:94

    Article  CAS  Google Scholar 

  372. Woolley E (1997) Surface hardening by ion implantation. Materials World 5:515

    CAS  Google Scholar 

  373. Schumacher G, Dettenwanger F, Schütze M et al (1999) Microalloying effects in the oxidation of TiAl materials. Intermetallics 7:1113

    Article  CAS  Google Scholar 

  374. Donchev A, Gleeson B, Schütze B (2003) Thermodynamic considerations of the beneficial effect of halogens on the oxidation resistance of TiAl-based alloys. Intermetallics 11:387

    Article  CAS  Google Scholar 

  375. Donchev A, Kolitsch A, Schütze M, Yankov R (2009) Plasma-immersion-ion-implantation of fluorine to protect TiAl-components against high-temperature oxidation. Plasma Process Polym 6:434

    Article  CAS  Google Scholar 

  376. Neve S, Masset PJ, Yankov RA (2010) High temperature oxidation resistance of fluorine-treated TiAl alloys: chemical vs. ion beam fluorination techniques. Nucl Instrum Methods Phys Res B 268:3381

    Article  CAS  Google Scholar 

  377. Masset PJ, Yankov R, Kolitsch A, Schütze M (2010) Comparison of fluorination treatments to improve the high temperature oxidation resistance of TiAl alloys in SO2 containing environments. Mater Sci Forum 638–642:1374

    Article  CAS  Google Scholar 

  378. Donchev A, Kolitsch A, Schütze M, Yankov R (2011) Combined Al- plus F-treatment of Ti-alloys for improved behaviour at elevated temperatures. Mater Corros 62:695

    Article  CAS  Google Scholar 

  379. Telbizova T, Parascandola S, Prokert F (2001) Ion nitriding of Al: growth kinetics and characterisation of the nitride layer. Surf CoatTechnol 142–144:1028

    Article  Google Scholar 

  380. Telbizova T, Chevolleau T, Möller W et al (2001) Nitrogen incorporation and loss during ion nitriding of Al. Nucl Instrum Methods Phys Res B 184:347

    Article  CAS  Google Scholar 

  381. Möller W, Parascandola S, Telbizova T et al (2001) Surface processes and diffusion mechanisms of ion nitriding of stainless steel and aluminium. Surf CoatTechnol 136:73

    Article  Google Scholar 

  382. Fink D (2004) Fundamentals of ion-irradiated polymers. Springer, Berlin

    Book  Google Scholar 

  383. Calcagno L, Foti G (1991) Ion irradiation of polymers. Nucl Instrum Methods B 59–60:1153

    Article  Google Scholar 

  384. Marletta G (1990) Chemical reactions and physical property modifications induced by keV ion beams in polymers. Nucl Instrum Methods Phys Res B 46:295

    Article  Google Scholar 

  385. Lee EH (1999) Ion-beam modification of polymeric materials – fundamental principles and applications. Nucl Instrum Methods Phys Res B 151:29

    Article  CAS  Google Scholar 

  386. Stepanov AL (2010) Synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review. Rev Adv Mater Sci 26:1

    CAS  Google Scholar 

  387. Townsend PD (1987) Optical effects of ion implantation. Rep Prog Phys 50:501

    Article  CAS  Google Scholar 

  388. Chen F, Wang XL, Wang KM (2007) Development of ion-implanted optical waveguides in optical materials: a review. Opt Mater 29:1523

    Article  CAS  Google Scholar 

  389. Chen F (2008) Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress. Crit Rev Solid State Mater Sci 33:165

    Article  CAS  Google Scholar 

  390. Bayly AR (1973) Optical properties of ion bombarded silica glass. Radiat Eff 18:111

    Article  Google Scholar 

  391. Standley RD, Gibson WM, Rodgers JW (1972) Properties of ion-bombarded fused quartz for integrated optics. Appl Optics 11:1313

    Article  CAS  Google Scholar 

  392. Wie DTY, Lee WW, Blom LR (1975) Large refractive index change induced by ion implantation in lithium niobate. Appl Phys Lett 25:329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Schmidt, B., Wetzig, K. (2012). Materials Processing. In: Ion Beams in Materials Processing and Analysis. Springer, Vienna. https://doi.org/10.1007/978-3-211-99356-9_4

Download citation

Publish with us

Policies and ethics