Skip to main content

From Oil Fields to Hilbert Schemes

  • Chapter
  • First Online:

Part of the book series: Texts and Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

New techniques for dealing with problems of numerical stability in computations involving multivariate polynomials allow a new approach to real world problems. Using a modelling problem for the optimization of oil production as a motivation, we present several recent developments involving border bases of polynomial ideals. After recalling the foundations of border basis theory in the exact case, we present a number of approximate techniques such as the eigenvalue method for polynomial system solving, the AVI algorithm for computing approximate border bases, and the SOI algorithm for computing stable order ideals. To get a deeper understanding for the algebra underlying this approximate world, we present recent advances concerning border basis and Gröbner basis schemes. They are open subschemes of Hilbert schemes and parametrize flat families of border bases and Gröbner bases. For the reader it will be a long, tortuous, sometimes dangerous, and hopefully fascinating journey from oil fields to Hilbert schemes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Abbott, C. Fassino, and M. Torrente, Thinning out redundant empirical data, Math. Comput. Sci. 1 (2007), 375–392.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Abbott, C. Fassino, and M. Torrente, Stable border bases for ideals of points, J. Symb. Comput. (to appear)

    Google Scholar 

  3. The ApCoCoA Team, ApCoCoA: Approximate Computations in Commutative Algebra, available at http://www.apcocoa.org.

  4. W. Auzinger and H. Stetter, An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations, in: R.G. Agarwal, Y.M. Chow, S.J. Wilson (eds.), Int. Conf. on Numerical Mathematics, Singapore 1988, Birkhäuser ISNM 86, Basel 1988, 11–30.

    Google Scholar 

  5. W. Auzinger and H. Stetter, A study of numerical elimination for the solution of multivariate polynomial systems, Technical Report, TU Wien 1989.

    Google Scholar 

  6. B. Buchberger and H. M. Möller, The construction of multivariate polynomials with preas-signed zeros, in: J. Calmet (ed.), Proceedings of EUROCAM’82, Lect. Notes in Comp. Sci. 144, Springer, Heidelberg 1982, 24–31.

    Google Scholar 

  7. A. Conca and G. Valla, Canonical Hilbert-Burch matrices for ideals of k[x, y], preprint available at arXiv:math\0708.3576.

    Google Scholar 

  8. The CoCoA Team, CoCoA: a system for doing Computations in Commutative Algebra, available at http://cocoa.dima.unige.it.

  9. D. Cox, Solving equations via algebras, in: A. Dickenstein and I. Emiris (eds.), Solving Polynomial Equations, Springer, Berlin 2005.

    Google Scholar 

  10. C. Fassino, Almost vanishing polynomials for sets of limited precision points, preprint available at arXiv:math\0807.3412.

    Google Scholar 

  11. T.S. Gustavsen, D. Laksov and R.M. Skjelnes, An elementary, explicit proof of the existence of Hilbert schemes of points, preprint available at arXiv:math\0506.161v1.

    Google Scholar 

  12. G.H. Golub and C.F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore 1989.

    MATH  Google Scholar 

  13. M. Haiman, q,t-Catalan numbers and the Hilbert scheme, Discr. Math. 193 (1998), 201–224.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Heldt, M. Kreuzer, S. Pokutta, and H. Poulisse, Approximate computation of zero-dimensional polynomial ideals, J. Symb. Comput. (to appear)

    Google Scholar 

  15. M. Huibregtse, A description of certain affine open schemes that form an open covering of \({\rm Hilb}^n_{\mathbb A^2_k}\), Pacific J. Math. 204 (2002), 97–143.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Huibregtse, An elementary construction of the multigraded Hilbert scheme of points, Pacific J. Math. 223 (2006), 269–315.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Kreuzer and A. Kehrein, Characterizations of border bases, J. Pure Appl. Alg. 196 (2005), 251–270.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Kreuzer and A. Kehrein, Computing border bases, J. Pure Appl. Alg. 205 (2006), 279–295.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Kreuzer and H. Poulisse, Computing approximate border bases, in preparation (2008)

    Google Scholar 

  20. M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer, Heidelberg 2000.

    Book  Google Scholar 

  21. M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer, Heidelberg 2005.

    Google Scholar 

  22. M. Kreuzer and L. Robbiano, Deformations of border bases, Coll. Math. 59 (2008), 275–297.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Iarrobino, Reducibility of the families of 0-dimensional schemes on a variety, Invent. Math. 15 (1972), 72–77.

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Springer, New York 2005.

    Google Scholar 

  25. H.M. Möller and T. Sauer, H-bases II: applications to numerical problems, in: A. Cohen, C. Rabut, and L.L. Schumaker (eds.), Curve and Surface Fitting, Vanderbilt Univ. Press, Nashville 2000, 1–10.

    Google Scholar 

  26. B. Mourrain, A new criterion for normal form algorithms, AAECC Lect. Notes Comp. Sci. 1719 (1999), 430–443.

    Article  MathSciNet  Google Scholar 

  27. R. Notari and M.L. Spreafico, A stratification of Hilbert schemes by initial ideals and applications, Manus. Math. 101 (2000), 429–448.

    Article  MATH  MathSciNet  Google Scholar 

  28. L. Robbiano, On border basis and Gröbner basis schemes, Coll. Math. 60 (2008), to appear.

    Google Scholar 

  29. H. Stetter, “Approximate Commutative Algebra” - an ill-chosen name for an important discipline, ACM Commun. Comp. Alg. 40 (2006), 79–81.

    Article  Google Scholar 

  30. H. Stetter, Numerical Polynomial Algebra, SIAM, Philadelphia 2004.

    MATH  Google Scholar 

Download references

Acknowledgements

The first and third author gratefully acknowledge the financial support of the Algebraic Oil Project provided by the Stichting Shell Research Foundation. All three authors are grateful to J. Abbott, C. Fassino and M.L. Torrente for allowing them to use their paper [2] as a basis for Section 5 above. Further thanks are due to D. Heldt and J. Limbeck for the implementation of preliminary versions of the AVI algorithm and to J. Abbott and M.L. Torrente for the implementation of the SOI algorithm which both aided the understanding of the peculiarities of the approximate world substantially. Finally, the authors thank D. Heldt and M. Popoviciu for useful discussions about the subjects of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kreuzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Vienna

About this chapter

Cite this chapter

Kreuzer, M., Poulisse, H., Robbiano, L. (2009). From Oil Fields to Hilbert Schemes. In: Robbiano, L., Abbott, J. (eds) Approximate Commutative Algebra. Texts and Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-211-99314-9_1

Download citation

Publish with us

Policies and ethics