Skip to main content

Conformal Mappings onto Nonoverlapping Regions

  • Chapter
Complex Analysis

Abstract

Let f(ζ) = a + dζ… be analytic and univalent in the unit disk |ζ| < 1, mapping it conformally onto some domain D. We shall call a = f(0) the center and |d| = |f′(0)| the inner radius of D with respect to a. Roughly speaking, our problem is to find n functions

$$f_j(\zeta) = a_j+d_j \zeta + \ldots, \quad j=1,2,\ldots,n,$$
((1))

which map the disk conformally onto nonoverlapping regions D j whose union has prescribed transfinite diameter R, with the centers a j as far apart as possible and the inner radii |d j | as large as possible. Here only n and R are specified in advance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yu. E. Alenicyn, “On univalent functions in multiply connected domains”, Mat. Sb. 39 (81) (1956), 315–336. (in Russian)

    Google Scholar 

  2. P.L. Duren, univalent functions (Springer-Verlag, Heidelberg and New York, 1983)

    Google Scholar 

  3. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable (Moscow, 1952; German transl., Deutscher Verlag, Berlin, 1957; 2nd ed., Moscow, 1966; English transl., Amer. Math. Soc., 1969).

    Google Scholar 

  4. R. Kühnau, “Über die schlichte konforme Abbildung auf nichtüberlappende Gebiete”, Math. Nachr. 36 (1968), 61–71.

    Article  Google Scholar 

  5. Z. Nehari, Conformal Mapping (McGraw-Hill, New York, 1952).

    Google Scholar 

  6. M. Schiffer, “A method of variation within the family of simple functions”, Proc. London Math. Soc. 44 (1938), 432–449.

    Article  Google Scholar 

  7. C.-T. Shih, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Duren, P.L., Schiffer, M.M. (1988). Conformal Mappings onto Nonoverlapping Regions. In: Hersch, J., Huber, A. (eds) Complex Analysis. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9158-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9158-5_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-1958-8

  • Online ISBN: 978-3-0348-9158-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics