Skip to main content

Abstract Statistical Estimation and Modern Harmonic Analysis

  • Conference paper
Proceedings of the International Congress of Mathematicians

Abstract

Suppose that t i are equispaced points in the unit interval t i = i/n, and we observe

$${y_i} = f\left( {{t_i}} \right) + s{z_i}, i = 1,...,n$$
(1)

, where the z i are i.i.d. N(0,1). Our goal is to recover the object f from these noisy observations. In order to do so, we must know something about f (otherwise we have n observations and 2n unknowns). In the branch of statistics called nonparametric regression, it is traditional to assume quantitative smoothness information about f, often of the form fF, where F is a ball in a functional class, for example an L2-Sobolev ball \(\left\{ {f:{{\left\| {{f^{\left( m \right)}}} \right\|}_{{L^2}}} \leqslant C} \right\}\). Performance is then measured by considering the minimax risk

$$M\left( {n,F} \right) = \mathop {min}\limits_{\hat f\left( \cdot \right)} \mathop {max}\limits_{f \in F} E\left\| {\hat f\left( {{y^{\left( n \right)}}} \right) - f} \right\|_{{L^2}{{\left( T \right)}^ \cdot }}^2$$
(2)

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bickel, Minimax estimation of a normal mean when the parameter space is restricted, Ann. Statist., 9(1981), 1301–1309.

    Article  MathSciNet  Google Scholar 

  2. J. Bretagnolle and C. Carol-Huber, Estimation des densités: risque minimax, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 47(1979), 119–137.

    Article  MathSciNet  Google Scholar 

  3. L.D. Brown and M.G. Low, Asymptotic equivalence of nonparametric regression and white noise (1990), to appear, Ann. Statist.

    Google Scholar 

  4. R. R. Coifman, Y. Meyer, and M. V. Wickerhauser, Wavelet analysis and signal processing, in Wavelets and Their Applications, M. B. Ruskai et al. (eds.), Jones and B art let t, Boston, MA, 1992, 153–178.

    MATH  Google Scholar 

  5. R. R. Coifman and M. V. Wickerhauser, Entropy-based algorithms for best-basis selection, IEEE Trans. Inform. Theory, 38(1992), 713–718.

    Article  Google Scholar 

  6. I. Daubechies, S. Jaffard, and J. L. Journé, A simple Wilson orthonormal basis with exponential decay, SIAM J. Math. Anal., 22(1991), 554–572.

    Article  MathSciNet  Google Scholar 

  7. R. A. DeVore, B. Jawerth, and V. Popov, Compression of Wavelet Decompositions, Amer. J. Math., 114(1991), 737–785.

    MathSciNet  MATH  Google Scholar 

  8. D. L. Donoho, Unconditional bases are optimal bases for data compression and for statistical estimation, Appl. Comput. Harmonic Analy., 1(1993), 100–115.

    Article  MathSciNet  Google Scholar 

  9. D. L. Donoho, De-noising via soft-thresholding, (1992), to appear, IEEE Trans. Inform. Theory, May 1995.

    Google Scholar 

  10. D. L. Donoho and I. M. Johnstone, Minimax risk over l p-balls for lq-error, Probab. Theory Related Fields 99(1994), 277–303.

    Article  MathSciNet  Google Scholar 

  11. D. L. Donoho and I. M. Johnstone, Minimax estimation via wavelet shrinkage, (1994), to appear, Ann. Statist.

    Google Scholar 

  12. D. L. Donoho and I. M. Johnstone, Ideal de-noising in a basis chosen from a library of orthonormal bases, C. R. Acad. Sci. Paris A, 319(1994), 1317–1322.

    MATH  Google Scholar 

  13. D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, Wavelet Shrinkage: Asymptopia? J. Roy. Statist. Soc. B 57(1995), 301–369.

    MathSciNet  MATH  Google Scholar 

  14. D. L. Donoho, R. C. Liu, and K. B. MacGibbon, Minimax risk over hyperrectangles, and implications, Ann. Statist., 18(1990), 1416–1437.

    Article  MathSciNet  Google Scholar 

  15. S. Y. Efroimovich and M. S. Pinsker, Estimation of square-integrable [spectral] density based on a sequence of observations, Problems Inform. Transmission, (1982), 182–196.

    Google Scholar 

  16. S. Y. Efroimovich and M. S. Pinsker, Estimation of square-integrable probability density of a random variable, Problems Inform. Transmission, (1983), 175–189.

    Google Scholar 

  17. H. G. Feichtinger, Atomic characterizations of modulation spaces through Gabor-type representations, Rocky Mountain J. Math., 19(1989), 113–126.

    Article  MathSciNet  Google Scholar 

  18. H. G. Feichtinger, K. Gröchenig, and D. Walnut, Wilson bases and modulation spaces, Math. Nachr., 155(1992), 7–17.

    Article  MathSciNet  Google Scholar 

  19. M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Functional Anal., 93(1990), 34–170.

    Article  MathSciNet  Google Scholar 

  20. M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the study of function spaces, NSF-CBMS Regional Conf. Ser. in Mathematics, 79(1991), American Math. Soc., Providence, RI.

    Google Scholar 

  21. K. Gröchenig, Unconditional bases in translation-and dilation-invariant function spaces on Rn, in Constructive Theory of Functions Conference Varna 1987, B. Sendov et al., eds., Bulgarian Acad. Sci., 174–183.

    Google Scholar 

  22. I. A. Ibragimov and R. Z. Has’minskii, Bounds for the risk of nonparametric regression estimates, Theory Probab. Appl., 27(1982), 84–99.

    Article  Google Scholar 

  23. I. A. Ibragimov and R. Z. Has’minskii, On nonparametric estimation of the value of a linear functional in a Gaussian white noise, Teor. Veroyatnost. i Primenen., 29 (1984), 19–32.

    MathSciNet  MATH  Google Scholar 

  24. I. M. Johnstone, G. Kerkyacharian, and D. Picard, Estimation d’une densite de probability par methode d’ondelettes, C. R. Acad. Sci. Paris (A) 315(1992), 211–216.

    MATH  Google Scholar 

  25. G. Kerkyacharian and D. Picard, Density estimation in Besov spaces, Statist. Prob. Lett. 13(1992), 15–24.

    Article  MathSciNet  Google Scholar 

  26. P. G. Lemarié and Y. Meyer, Ondelettes et bases Hilbertiennes, Rev. Math. Iberoamericana, 2(1986), 1–18.

    Article  MathSciNet  Google Scholar 

  27. Y. Meyer, Ondelettes, Hermann, Paris, 1990.

    Google Scholar 

  28. M. Nussbaum, Spline smoothing and asymptotic efficiency in L2, Ann. Statist., 13(1985), 984–997.

    Article  MathSciNet  Google Scholar 

  29. M. S. Pinsker, Optimal filtering of square integrable signals in Gaussian white noise, Problems Inform. Transmission (1980), 120–133.

    Google Scholar 

  30. C. Stone, Optimal global rates of convergence for nonparametric estimators, Ann. Statist., 10(1982), 1040–1053.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag, Basel, Switzerland

About this paper

Cite this paper

Donoho, D.L. (1995). Abstract Statistical Estimation and Modern Harmonic Analysis. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_92

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics