Skip to main content

Abstract

There are two rather separate sections to this paper. In the first part we indicate how the geometry of Teichmüller space and moduli space can be used to study the dynamics of rational billiards and more generally the dynamics of foliations defined by flat structures or quadratic differentials. In the second part of the paper we study random walks on the mapping class group of a surface and on Teichmüller space and show how the sphere of foliations defined by Thurston can be realized as the boundary of the random walks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Boldrighini, C. M. Keane, and F. Marchetti,Billiards in polygons, Ann. of Probab.6 (1978), 532–540.

    Article  MathSciNet  Google Scholar 

  2. A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, Astérisque6667 (1979).

    Google Scholar 

  3. A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, Astérisque6667 (1979).

    Google Scholar 

  4. W. Floyd,Group completions and limit sets of Kleinian groups, Invent. Math.57 (1981), 205–218.

    Article  MathSciNet  Google Scholar 

  5. H. Furstenberg,Strict ergodicity and transformations of the torus, Amer J. Math.88 (1961), 573–601.

    Article  MathSciNet  Google Scholar 

  6. H. Furstenberg,Poisson boundaries and envelopes of discrete groups, Bull. Amer. Math. Soc.73 (1967), 350–356.

    Article  MathSciNet  Google Scholar 

  7. H. Furstenberg,Random walks and discrete subgroups of Lie groups, Adv. Probab. Related Topics, vol. 1, Dekker, New York, 1971, pp. 3–63.

    Google Scholar 

  8. N. Ivanov,Rank of Teichmüller modular groups, Mat. Zametki44 (1988), 636–644.

    MathSciNet  MATH  Google Scholar 

  9. V. Kaimanovich,The Poisson boundary of hyperbolic groups, C.R. Acad. Sci. Paris318 (1994), 59–64.

    MathSciNet  MATH  Google Scholar 

  10. V. Kaimanovich and H. Masur,The Poisson boundary of the mapping class group and of Teichmüller space, submitted.

    Google Scholar 

  11. S. Kerckhoff, H. Masur, and J. Smillie,Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2)124 (1986), 293–311.

    Article  MathSciNet  Google Scholar 

  12. H. Masur,Closed trajectories of a quadratic differential with an application to billiards, Duke Math. J.53 (1986), 307–313.

    Article  MathSciNet  Google Scholar 

  13. H. Masur,Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, Holomorphic Functions and Moduli, vol. 2, Springer-Verlag, Berlin and New York, 1988.

    MATH  Google Scholar 

  14. H. Masur,The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynamical Systems10 (1990), 151–176.

    Article  MathSciNet  Google Scholar 

  15. H. Masur,Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J.66 (1992), 387–442.

    Article  MathSciNet  Google Scholar 

  16. H. MasurRandom walk on Teichmüller space and the mapping class group, to appear in Journal d’Analyse Mathématique.

    Google Scholar 

  17. H. Masur and J. Smillie,Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2)134 (1991), 455–543.

    Article  MathSciNet  Google Scholar 

  18. H. Masur and J. Smillie,Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comm. Math. Helv.68 (1993), 289–307.

    Article  MathSciNet  Google Scholar 

  19. Y. Sinai,Hyperbolic billiards, Proc. Internat. Congress Math., 1990, vol. 1, Kyoto, pp. 249–260.

    Google Scholar 

  20. K. Strebel, Quadratic Differentials, Springer-Verlag, Berlin and New York, 1984.

    Book  Google Scholar 

  21. W. P. Thurston,On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc.18 (1988), 417–431.

    Article  MathSciNet  Google Scholar 

  22. W. Veech,Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc.140 (1969), 1–34.

    MathSciNet  MATH  Google Scholar 

  23. W. Veech,The Teichmüller geodesic flow, Ann. of Math. (2)124 (1986), 441–530.

    Article  MathSciNet  Google Scholar 

  24. W. Veech,Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math.97 (1989), 553–583.

    Article  MathSciNet  Google Scholar 

  25. A. Zemylakov and A. Katok,Topological transitivity of billiards in polygons, Mat. Zametki18 (1975), 291–300.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhaäser Verlag

About this paper

Cite this paper

Masur, H. (1995). Teichmüller Space, Dynamics, Probability. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_77

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics