Skip to main content

The Path Model for Representations of Symmetrizable Kac-Moody Algebras

  • Conference paper
Proceedings of the International Congress of Mathematicians

Abstract

In the theory of finite-dimensional representations of complex reductive algebraic groups, the group GL n (ℂ) is singled out by the fact that besides the usual language of weight lattices, roots, and characters, there exists an additional important combinatorial tool: the Young tableaux. For example, the sum over the weights of all tableaux of a fixed shape is the character of the corresponding representation, and the Littlewood-Richardson rule describes the decomposition of tensor products of GL n (ℂ)-modules purely in terms of the combinatoric of these Young tableaux. The advantage of this type of formula is (for example compared to Steinberg’s formula to decompose tensor products) that there is no cancellation of terms. This makes it much easier (and sometimes even possible) to prove for example that certain representations occur in a given tensor product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. Berele, A Schensted-type correspondence for the symplectic group, J. Combin. Theory Ser. A, 43 (1986), 320–328.

    Article  MathSciNet  Google Scholar 

  2. A. D. Berenstein and A. V. Zelevinsky, Triple multiplicities for sl r +1 and the spectrum of the exterior algebra of the adjoint representation, J. Alg. Combinatorics, 1 (1992), 7–22.

    Article  MathSciNet  Google Scholar 

  3. W. Fulton and J. Harris, Representation theory, Graduate Texts in Math., Springer Verlag, Berlin and New York, (1991).

    Google Scholar 

  4. I. M. Gelfand and M. L. Zetlin, Finite dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk. USSR, 71 (1950), 825–828.

    MathSciNet  Google Scholar 

  5. T. Joseph, Quantum Groups and Their Primitive Ideals, Springer Verlag, Berlin and New York, to appear.

    Google Scholar 

  6. M. Kashiwara, Crystalizing the q-analogue of Universal Enveloping algebras, Commun. Math. Phys., 133 (1990), 249–260.

    Article  MathSciNet  Google Scholar 

  7. M. Kashiwara, Crystal bases of modified quantized enveloping algebras, RIMS, 917 (1993).

    Google Scholar 

  8. R. C. King, Weight multiplicities for the classical groups, Group Theoretical methods in Physics, Lecture Notes in Phys., (Janner, Jannssen, and Boon, eds.), Springer Verlag, Berlin and New York, 50 (1976).

    Google Scholar 

  9. K. Koike and I. Terada, Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank, Adv. in Math., 79 (1990), 104–135.

    Article  MathSciNet  Google Scholar 

  10. S. Kumar, Proof of the Parthasarathy-Ranga-Rao-Varadarajan Conjecture, Invent. Math., 93 (1988), 117–130.

    Article  MathSciNet  Google Scholar 

  11. V. Lakshrnibai and C. S. Seshadri, Geometry of G/P V, J. Algebra, 100 (1986), 462–557.

    Article  MathSciNet  Google Scholar 

  12. V. Lakshmibai and C. S. Seshadri, Standard monomial theory, in: Proceedings of the Hyderabad Conference on algebraic groups, Manoj Prakashan, Madras, (1991), 279–323.

    Google Scholar 

  13. P. Littelmann, A generalization of the Littlewood-Richardson rule, J. Algebra, 130 (1990), 328–368.

    Article  MathSciNet  Google Scholar 

  14. P. Littelmann, A Littlewood-Richardson type rule for symmetrizable Kac-Moody algebras, Invent. Math., 116 (1994), 329–346.

    Article  MathSciNet  Google Scholar 

  15. P. Littelmann, Paths and root operators in representation theory, preprint, to appear in: Ann. of Math. (2) (1993).

    Google Scholar 

  16. D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford University Press, London, (1950).

    MATH  Google Scholar 

  17. D. E. Littlewood and A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London Ser. A, 233 (1934), 99–141.

    Article  Google Scholar 

  18. G. Lusztig, Canonical bases arising from quantized enveloping algebras II, Progr. Theoret. Phys., 102 (1990), 175–201.

    Article  MathSciNet  Google Scholar 

  19. G. Lusztig, Introduction to quantum groups, Birkhäuser Verlag, Boston, Progr. Math., 110 (1993).

    MATH  Google Scholar 

  20. I. G. Macdonald, Symmetric Functions and Hall polynomials, Oxford University Press, London, (1979).

    MATH  Google Scholar 

  21. O. Mathieu, Construction d’un groupe de Kac-Moody et applications, Compos. Math., 69 (1989), 37–60.

    MathSciNet  MATH  Google Scholar 

  22. T. Nakashima, Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras, preprint, RIMS, 783 (1991).

    Google Scholar 

  23. R. A. Proctor, A Schensted algorithm which models tensor representations of the orthogonal group, Canad. J. Math., 42 (1990), 28–49.

    Article  MathSciNet  Google Scholar 

  24. G. B. Robinson, On the representation of the symmetric group, Amer. J. Math., 69 (1938), 745–760.

    Article  Google Scholar 

  25. M. P. Schutzenberger, La correspendance de Robinson, Combinatoire et représentation du groupe symmetrique, Lecture Notes in Math., Springer Verlag, Berlin and New York, 579 (1976).

    Google Scholar 

  26. S. Sundaram, Orthogonal tableaux and an insertion algorithm for SO(2n + 1), J. Combin. Theory Ser. A, 53 (1990), 239–256.

    Article  MathSciNet  Google Scholar 

  27. H. Weyl, The classical groups, their invariants and representations, Princeton University Press, Princeton, (1946).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Littelmann, P. (1995). The Path Model for Representations of Symmetrizable Kac-Moody Algebras. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_23

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics