Skip to main content

Igf2 imprinting in development and disease

  • Chapter

Abstract

Insuline-like growth factor 2 gene (Igf2) was one of the first imprinted genes to be discovered and occupies a centre stage in the study of imprinting. This is because it has dramatic effects on the control of fetal growth, it is involved in growth disorders and in cancer, it interacts with products of other imprinted genes, and its imprinting status is under complex regulation in a cluster of tightly linked imprinted genes. Here we review briefly the key features of Igf2 imprinting in normal development and in disease, and hope to show what a fascinating subject of study this gene and its biology provides.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainscough JF, Koide T, Tada M, Barton S, Surani MA (1997) Imprinting ofIgf2andH19from a 130 kb YAC transgene.Development124: 3621–3632

    CAS  PubMed  Google Scholar 

  • Bartolomei MS, Tilghman SM (1997) Genomic imprinting in mammalsAnnu Rev Genet31: 493–525

    Article  CAS  PubMed  Google Scholar 

  • Bates P, Fisher R, Ward A, Richardson L, Hill DJ, Graham CF (1995) Mammary cancer in transgenic mice expressing insulin-like growth factor II(IGF-II). Brit J Cancer72: 1189–1193

    CAS  PubMed  Google Scholar 

  • Bestor TH, Tycko B (1996) Creation of genomic methylation patterns.Nat Genet12: 363–367

    Article  CAS  PubMed  Google Scholar 

  • Brannan CI, Bartolomei MS (1999) Mechanisms of genomic imprinting.Curr Opin Genet Develop9:164–170

    Article  CAS  Google Scholar 

  • Brown KW, Villar AJ, Bickmore W, Clayton-Smith J, Catchpoole D, Maher ER, Reik W (1996) Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelicIGF2expression through an H19-independent pathway.Hum Mol Genet5: 2027–2032

    Article  CAS  PubMed  Google Scholar 

  • Caspary T, Cleary MA, Baker CC, Guan XJ, Tilghman SM (1998) Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster.Mol Cell Biol18: 3466–3474

    CAS  PubMed  Google Scholar 

  • Christofori G, Naik P, Hanahan D (1994) A second signal supplied by insulin-like growth factor II inoncogene-induced tumorigenesis.Nature369: 414–418

    Article  CAS  PubMed  Google Scholar 

  • Constancia M, Pickard B, Kelsey G, Reik W (1998) Imprinting mechanisms.Genome8: 881–900 Dean W, Bowden L, Aitchison A, Klose J, Moore T, Meneses JJ, Reik W, Feil R (1998) Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: associa-tion with aberrant phenotypes.Development125: 2273–2282

    Google Scholar 

  • De Chiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting.Nature345: 78–80

    Article  Google Scholar 

  • Efstratiadis A (1998) Genetics of mouse growth.Int J Develop Biol42: 955–976

    CAS  Google Scholar 

  • Eggenschwiler J, Ludwig T, Fisher P, Leighton PA, Tilghman SM, Efstratiadis A (1997) Mouse mutant embryos overexpressingIGF-IIexhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes.Gene Develop11: 3128–3142

    Article  CAS  Google Scholar 

  • Feil R, Handel MA, Allen ND, Reik W (1995) Chromatin structure and imprinting: developmental control of DNase-I sensitivity in the mouse insulin-like growth factor 2 gene.Develop Genet17: 240–252

    Article  CAS  Google Scholar 

  • Feil R, Walter J, Allen ND, Reik W (1994) Developmental control of allelic methylation in the imprinted mouseIgf2andH19genes.Development120: 2933–2943

    CAS  PubMed  Google Scholar 

  • Feinberg AP (1999) Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer: an introduction.Cancer Res59: 1743–1746

    Google Scholar 

  • Forné T, Oswald J, Dean W, Saam JR, Bailleul B, Dandolo L, Tilghman SM, Walter J, Reik W (1997) Loss of the maternalH19gene induces changes inIgf2methylation in both cis and trans.Proc Natl Acad Sci USA94: 10243–10248

    Article  PubMed  Google Scholar 

  • Gardner RL, Squire S, Zaina S, Hills S, Graham CF (1999) Insulin-like growth factor-2 regulation of conceptus composition: effects of the trophectoderm and inner cell mass genotypes in the mouse.Biol Reprod60: 190–195

    Article  CAS  PubMed  Google Scholar 

  • Hark AT, Tilghman SM (1998) Chromatin conformation of theH19epigenetic mark.Hum Mol Genet7: 1979–1985

    Article  CAS  PubMed  Google Scholar 

  • Hatada I, Ohashi H, Fukushima Y, Kaneoko Y, Inoue M, Komoto Y, Okada A, Ohishi S, Nabetani A, Morisaki H et al (1996) An imprinted genep57 K ip 2is mutated in Beckwith-Wiedemann syndrome.Nat Genet14: 171–173

    Article  CAS  PubMed  Google Scholar 

  • Joyce JA, Lam WK, Catchpoole DJ, Jenks P, Reik W, Maher ER, Schofield PN (1997) Imprinting ofIGF2andH19:lack of reciprocity in sporadic Beckwith-Wiedemann syndrome.Hum Mol Genet6: 1543–1548

    Article  CAS  PubMed  Google Scholar 

  • Khosla S, Aitchison A, Gregory R, Allen ND, Feil R (1999) Parental allele-specific chromatin configuration in a boundary-imprinting-control element upstream of the mouseH19gene.Mol Cell Biol19: 2556–2566

    CAS  PubMed  Google Scholar 

  • Kitsberg D, Selig S, Brandeis M, Simon I, Keshet I, Driscoll DJ, Nicholls RD, Cedar H (1993) Allele-specific replication timing of imprinted gene regions.Nature364: 459–463

    Article  CAS  PubMed  Google Scholar 

  • Lam WW, Halada I, Ohishi S, Mukai T, Joyce JA, Cole JA, Cole TR, Donnai D, Reik W, Schofield PN, Maher ER (1999) Analysis of germline CDKN IC (p57KIP2) mutations in familial and sporadic Beckwith-Wiedermann Syndrome (BWS) provides a novel genotype-phenotype correlation.J Med Genet36: 518–523

    CAS  PubMed  Google Scholar 

  • Lee JE, Pintar J, Efstratiadis A (1990) Pattern of the insulin-like growth factor II gene expression during early mouse embryogenesis.Development110: 151–159

    CAS  PubMed  Google Scholar 

  • Lee MP, Debaun M, Randhawa G, Reichard BA, Elledge SJ, Feinberg AP (1997) Low frequency ofp57 K ip 2mutation in Beckwith-Wiedemann syndrome.Amer J Hum Genet61: 304–309

    Article  CAS  PubMed  Google Scholar 

  • Lee MP, Debaun MR, Mitsuya K, Galonek HL, Brandenburg S, Oshimura M, Feinberg AP (1999) Loss of imprinting of a paternally expressed transcript, with antisense orientation toKvLQT1occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting.Proc Natl Acad Sci USA 96: 5203–5208

    Article  CAS  PubMed  Google Scholar 

  • Lee MP, Hu RJ, Johnson LA, Feinberg AP (1997) HumanKvLQTIgene shows tissue-specific imprint ing and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements.Nat Genet15 181–185

    Article  PubMed  Google Scholar 

  • Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM (1995a) Disruption of imprinting causes by deletion of theH19gene region in mice.Nature375: 34–39

    Article  CAS  Google Scholar 

  • Leighton PA, Saam JR, Ingram RS, Stewart CL, Tilghman SM (1995b) An enhancer deletion affects bothH19and1gf2expression.Gene Develop9: 2079–2089

    Article  CAS  Google Scholar 

  • Lyko F, Brenton JD, Surani MA, Paro R (1997) An imprinting element from the mouseH19locus functions as a silencer inDrosophila. Nat Genet16: 171–173

    CAS  Google Scholar 

  • Mannens M, Alders M, Redeker B, Bliek J, Steenman M, Wiesmeyer C, de Meulemeester M, Ryan A, Kalikin L, Voute et al (1996) Positional cloning of genes involved in the Beckwith-Wiedemann syndrome, hemihypertrophy and associated childhood tumors.Med Pediat Oncol27: 490–494

    Article  CAS  Google Scholar 

  • Miyoshi N, Kuroiwa Y, Kohda T, Shitara H, Yonekawa H, Kawabe T, Hasegawa H, Barton SC, Surani MA, Kaneko-Ishino T et al (1998) Identification of the Megl/GrblO imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene.Proc Natl Acad Sci USA95: 1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Moore T, Constancia M, Zubair M, Bailleul B, Feil R, Sasaki H, Reik W (1997) Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprint-ing control region upstream of mouseIgf2. Proc Natl Acad Sci USA94: 12509–12514

    Article  CAS  Google Scholar 

  • Morison IM, Reeve AE (1998) Insulin-like growth factor 2 and overgrowth: molecular biology and clinical implications.Mol Med Today4: 110–115

    Article  CAS  PubMed  Google Scholar 

  • Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, Hensle T, Weiss L, Memorrow L, Loew T et al (1994) Epigenetic lesions at theH19locus in Wilms’ tumour patients.Nat Genet7: 440–447

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC (1999) A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development.Mol Cell Biol19: 1262–1270

    CAS  PubMed  Google Scholar 

  • O’Keefe D, Dao D, Zhao L, Sanderson R, Warburton D, Weiss L, Anyane-Yeboa K, Tycko B (1997) Coding mutations inp57 Kip2are present in some cases of Beckwith-Wiedemann syndrome but are rare or absent in Wilms’ tumors.Amer J Hum Genet61: 295–303

    Article  PubMed  Google Scholar 

  • Okamotomo K, Morison IM, Taniguchi T, Reeve AE (1997) Epigenetic changes at the insulin-like growth factorII/H19locus in developing kidney is an early event in Wilms’ tumorigenesis.Proc Natl Acad Sci USA94: 5367–5371

    Article  Google Scholar 

  • Olek A, Walter J (1997) The preimplantation ontogeny of theH19methylation imprinting.Nat Genet17: 275–276

    Article  CAS  PubMed  Google Scholar 

  • Oswald J, Engemann S, Lane M, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000) Active demethylation of the paternal genome in the mouse zygote.Curr Biol; in press

    Google Scholar 

  • Paulsen M, Davies KR, Bowden LM, Villar M, Franck O, Fuermann M, Dean WL, Moore TF, Rodrigues N, Davies KE et al (1998) Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5.Hum Mol Genet7: 1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Walter J (1998) Imprinting mechanisms in mammals.Curr Opin Genet Develop8: 154–164 Reik W, Maher ER (1997) Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome.Trends Genet13: 330–334

    Article  Google Scholar 

  • Reik W, Brown KW, Schneid H, Le Bouc Y, Bickmore W, Maher ER (1995) Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in theIGF2–H19domain.Hum Mol Genet4: 2379–2385

    Article  CAS  PubMed  Google Scholar 

  • Sasaki H, Jones PA, Chaillet JR, Ferguson-Smith AC, Barton SC, Reik W, Surani MA (1992) Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor(Igf2)gene.Gene Develop6: 1843–1856

    Article  CAS  Google Scholar 

  • Shemer R, Birger Y, Dean WL, Reik W, Riggs AD, Razin A (1996) Dynamic methylation adjustment and counting as part of imprinting mechanisms.Proc Natl Acad Sci USA93: 6371–6376

    Article  CAS  PubMed  Google Scholar 

  • Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, Cooper PR, Smallwood AC, Joyce JA, Schofield PN, Reik W et al (1999) A maternally methylated CpG-island inKvLQT1is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome.Proc Natl Acad Sci USA96: 8064–8069

    Article  CAS  PubMed  Google Scholar 

  • Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP (1994) Loss of imprinting ofIGF2is linked to reduced expression and abnormal methylation ofH19in Wilms’ tumour.Nat Genet7: 433–439

    Article  CAS  PubMed  Google Scholar 

  • Sun FL, Dean WL, Kelsey G, Allen ND, Reik W (1997) Transactivation ofIgf2in a mouse model of Beckwith-Wiedemann syndrome.Nature389: 809–815

    Article  CAS  PubMed  Google Scholar 

  • Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line.Cell93: 309–312 Szabo PE, Pfeifer GP, Mann JR (1998) Characterization of novel parent-specific epigenetic modifications upstream of the imprinted mouseH19gene.Mol Cell Biol18: 6767–6776

    Google Scholar 

  • Thorvaldsen JL, Duran KL, Bartolomei MS (1998) Deletion of theH19differentially methylated domain results in loss of imprinted expression ofH19andIgf2. Gene Develop12: 3693–3702 Tilghman SM (1999) The sins of the fathers and mothers: genomic imprinting in mammalian devel-opment.Cell96: 185–193

    Google Scholar 

  • Tremblay KD, Duran KL, Bartolomei MS (1997) A 5’ 2-kilobase-pair region of the imprinted mouseH19gene exhibits exclusive paternal methylation throughout development.Mol Cell Biol17: 4322–4329

    CAS  PubMed  Google Scholar 

  • Ward A (1997) Beckwith-Wiedemann syndrome and Wilms’ tumour.Mol Hum Reprod3: 157–168 Webber AL, Ingram RS, Levorse JM, Tilghman SM (1998) Location of enhancers is essential for the imprinting ofH19andIgf2genes.Nature391: 711–715

    Google Scholar 

  • Weksberg R, Shen DR, Fei YL, Song QL, Squire J (1993) Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome.Nat Genet5: 143–150

    Article  CAS  PubMed  Google Scholar 

  • Wutz A, Smrzkda OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprinted expression of theIgf2rgene depends on an intronic CpG island.Nature389: 745–749

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Reik, W. et al. (2000). Igf2 imprinting in development and disease. In: Olmo, E., Redi, C.A. (eds) Chromosomes Today. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8484-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8484-6_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9587-3

  • Online ISBN: 978-3-0348-8484-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics