Skip to main content

Regional selectivity of antipsychotic drugs

  • Chapter
Atypical Antipsychotics

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

  • 328 Accesses

Abstract

Antipsychotic drugs have been in clinical practice for more than 40 years, and it is now well established that at comparable levels of antipsychotic efficacy, the incidence of side-effects (especially the extrapyramidal side-effects) differs between individual drugs. This has already been known for a long time, but the earlier studies were largely overlooked. Among the earlier papers were a number of clinical studies comparing several phenothiazine antipsychotics, such as the large multicentre double blind study conducted by the National Institute of Mental Health in 1964 [1]. This study showed that in therapeutically equivalent doses, thioridazine produced significantly less rigidity and dystonia than chlorpromazine and fluphenazine. Comparable findings were also reported by other groups [24]. After the introduction of clozapine, it became even more apparent that antipsychotic drugs not necessarily had to induce extrapyramidal side-effects [5-8], see also Naber et al., this volume. This drugs seems to be almost completely free of extrapyramidal side-effects, including tardive dyskinesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Institute of Mental Health (1964) Phenothiazine treatment in acute schizophrenics.Arch Gen Psychiatr10: 246–261

    Article  Google Scholar 

  2. Galbrecht C, Klett C (1968) Predicting response to phenothiazines: the right drug for the right patient.JNery Ment Dis147: 173–183

    Article  CAS  Google Scholar 

  3. Herman E, Pleasure H (1963) Clinical evaluation of thioridazine and chlorpromazine in chronic schizophrenics.Dis New Syst24; 54–59

    CAS  Google Scholar 

  4. Lasky J, Klett C, Caffey E, Bennett J, Rosenblum M, Hollister L (1962) A comparison evaluation of chlorpromazine, chlorprothixene, fluphenazine, reserpine, thioridazine and triflupromazine.Dis New Syst23: 1–8

    Google Scholar 

  5. Baldessarini R, Frankenburg F (1991) Clozapine: A novel antipsychotic agent.NEngJMed324: 646–754

    Google Scholar 

  6. Fitton A, Heel R (1990) Clozapine. A review of its pharmacological properties, and therapeutic use in schizophrenia.Drugs40: 722–747

    Article  PubMed  CAS  Google Scholar 

  7. Sayers A, Amster H (1977) Clozapine. In: M Goldberg (ed.):Pharmacological and biochemical properties of drug substances vol. 1.Amer Pharmaceut Ass 1–31

    Google Scholar 

  8. Ellenbroek BA (1993) Treatment of schizophrenia: A clinical and preclinical evaluation of neuroleptic drugs.Pharmac Ther 57:1–78

    Article  CAS  Google Scholar 

  9. Christensen A (1985) Classification of neuroleptics: Implications for tardive dyskinesia.Pol JPharm Pharmacol37: 295–309

    CAS  Google Scholar 

  10. Malmberg A, Jackson DM, Eriksson A, Mohell N (1993) Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B, and D3 receptors.Mol Pharmacol43: 749–754

    PubMed  CAS  Google Scholar 

  11. Köhler C, Hall H, Magnusson O, Lewander T, Gustafsson K (1990) Biochemical pharmacology of the atypical neuroleptic remoxipride.Acta Psychiatr Scand82 (A suppl 358): 27–36

    Article  Google Scholar 

  12. Snyder S, Greenberg D, Yamamura H (1974) Antischizophrenic drugs and brain cholinergic receptors.Arch Gen Psychiatr31: 58–61

    Article  PubMed  CAS  Google Scholar 

  13. Meltzer HY, Matsubara S, Lee J (1989) Classification of typical ant atypical antipsychotic drugs on the basis of DID2 and serotonin pK, values.JPharmacol Exp Ther251: 238–246

    CAS  Google Scholar 

  14. LeFur G, Burgevin M, Malgouris C, Uzan A (1979) Differential effects of typical and atypical neuroleptics on alpha-noradrenergic and dopaminergic receptors.Neuropharmacol18: 591–594

    Article  CAS  Google Scholar 

  15. Altar C, Wasley A, Neale R, Stone G (1986) Typical and atypical antipsychotic occupancy of D2 and S2 receptors: An autoradiographic analysis on rat brain.Brain Res Bull16: 517–525

    Article  PubMed  CAS  Google Scholar 

  16. Meltzer H (1992) The importance of serotonin-dopamine interactions in the action of clozapine.BrJPsychiat160 (Suppl 17): 22–29

    Google Scholar 

  17. Bischoff S, Christen P, Vassout A (1988) Blockade of hippocampal dopamine (DA) receptors: A tool for antipsychotics with low extrapyramidal side effect.Prog Neuro-Psychopharmacol. Biol Psychiat12: 455–467

    Article  CAS  Google Scholar 

  18. Wetzel H, Wiedemann K, Holsboer F, Benkert O (1991) Savoxepine: invalidation of an “atypical” neuroleptic response pattern predicted by animal models in an open clinical trial with schizophrenic patients.Psychopharmacology103: 280–283

    Article  PubMed  CAS  Google Scholar 

  19. Chiodo L, Bunney B (1983) Typical and atypical neuroleptics: Differential effects of chronic administration on the activity of A9 and A0midbrain dopaminergic neurons.JNeurosci3: 1607–1619

    CAS  Google Scholar 

  20. White F, Wang R (1983) Differential effects of classical and atypical antipsychotic drugs on A9 andA10 dopamine neurons.Science211: 1054–1056

    Article  Google Scholar 

  21. Skarsfeldt T (1988) Differential effects after repeated treatment with haloperidol, clozapine, thioridazine and tefludazine on SNC and VTA dopamine neurones in rats.Life Sci42: 1037--1044

    Article  PubMed  CAS  Google Scholar 

  22. GoldsteinJLitwin L, Sutton E, MalickJ(1989) Effects of ICI 169,369, a selective serotonin2antagonist, in electrophysiological tests predictive of antipsychotic activity.JPharmacol Exp Ther249: 673–680

    CAS  Google Scholar 

  23. Bunney BS(1984)Antipsychotic drug effects on the electric activity of dopaminergic neurons.Trends Neurosci8: 212–215

    Article  Google Scholar 

  24. ArntJSkarsfeldt T(1998)Do novel antipsychotics have similar pharmacological characteristics?A review of the literature.Neuropsychopharmacol18: 63–101

    Article  CAS  Google Scholar 

  25. Stockton ME, Rasmussen K (1996) Electrophysiological effects of olanzapine, a novel antipsychotic, on A9 and A10 dopamine neurons.Neuropsychopharmacol14: 97–105

    Article  CAS  Google Scholar 

  26. Gysling K, Wang R (1983) Morphine-induced activation of A10 dopamine neurons in the rat.Brain Res277: 119–127

    Article  PubMed  CAS  Google Scholar 

  27. IchikawaJMeltzer H (1990) The effects of chronic clozapine and haloperidol on basal dopamine release and metabolism in rat striatum and nucleus accumbens studied byin vivomicrodialysis.Eur JPharmacol176: 371–374

    Article  CAS  Google Scholar 

  28. Kelland M, Freedman A, Chiodo L(1989)Chloral hydrate anaesthesia alters the responsiveness of identified midbrain dopamine neurons to dopamine agonist administration.Synapse3: 30–37

    Article  PubMed  CAS  Google Scholar 

  29. Zhang W, Tilson H, Stackowiak M, HongJ(1989)Repeated haloperidol administration changes basal release of striatal dopamine and subsequent response to haloperidol challenge.Brain Res484: 389–392

    Article  PubMed  CAS  Google Scholar 

  30. Mereu G, Lilliu V, Vargiu P, Muntoni AL, Diana M, Gessa GL(1995)Depolarization inactivation of dopamine neurons: an artifact?J Neuroscience15: 1144–1149

    CAS  Google Scholar 

  31. Melis M, Mereu G, Lilliu V, Quartu M, Diana M, Gessa GL(1998)Haloperidol does not produce dopamine cell depolarization-block in paralyzed, unanesthetized rats.Brain Res783: 127–132

    Article  PubMed  CAS  Google Scholar 

  32. Melis M, Gessa GL, Diana M(1998)Clozapine does activate nigrostriatal dopamine neurons in unanesthetized rats.Eur JPharmacol363: 135–138

    Article  CAS  Google Scholar 

  33. Rebec GV, Alloway KD, Bashore TR(1991)Differential actions of classical and atypical antipsychotic drugs on spontaneous neuronal activity in the amygdala complex.Pharmacol Biochem Behav14: 49–56

    Article  Google Scholar 

  34. Wang Z, Rebec GV (1996) Amygdaloid neurons respond to clozapine rather than haloperidol in behaving rats pretreated with intra-amygdaloid amphetamine.Brain Res711: 64–72

    Article  PubMed  CAS  Google Scholar 

  35. Morelli M, Porceddu ML, Imperato A, DiChiara G(1981)Role of substantia nigra pars reticulata neurons in expression of antipsychotic-induced catalepsy.Brain Res217: 375–379

    Article  PubMed  CAS  Google Scholar 

  36. Ellenbroek BA, Schwarz M, Sontag KH, Cools AR(1985)The importance of the striatonigro-collicular pathway in the expression of haloperidol-induced tonic electromyographic activity.Neurosci Lett54: 189–194

    Article  PubMed  CAS  Google Scholar 

  37. Bruggeman R, Westerink BHC, Timmerman W (1997) Effects of risperidone, clozapine and haloperidol on extracellular recordings of substantia nigra pars reticulata neurons of the rat brain.Europ JPharmacol324: 49–56

    Article  CAS  Google Scholar 

  38. Timmerman W, Heijmen M, Westerink BHC, Bruggeman R, den Boer JA (1999) Effects of acute and administration of olanapine in comparison to clozapine and haloperidol on extra-cellular recordings of substantia nigra reticulate neurons in the rat brain.Psychopharmacology144: 286–294

    Article  PubMed  CAS  Google Scholar 

  39. Van Rossum J (1966) The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs.Arch Intern Pharmacodyn Ther160: 492–494

    Google Scholar 

  40. Westerink B, Korf J (1975) Influence of drugs on striatal and limbic homovanillic acid concentration in the rat brain.Europ JPharmacol33: 31–40

    Article  CAS  Google Scholar 

  41. Bürki HR, Ruch W, Asper H(1975)Effects of clozapine, thioridazine, perlapine and haloperidol on the metabolism of the biogenic amines in the brain of the rat.Psychopharmacology41: 27–33

    Article  Google Scholar 

  42. Salter CF, Salama AI (1986) 3-Methoxytyramine accumulation: Effects of typical neuroleptics and various atypical compounds.Naunyn Schmiedeb Arch Pharmacol334: 125–132

    Article  Google Scholar 

  43. Lane RF, Blaha CD (1986) Electrochemistry in vivo:Application to CNS pharmacology.Ann NYAcad Sci473: 50–69

    Article  CAS  Google Scholar 

  44. Blaha CD, Lane RF (1987) Chronic treatment with classical and atypical antipsychotic drugs differentially decreases dopamine release in striatum and nucleus accumbensin vivo. Neurosci Lett78: 199–204

    Article  CAS  Google Scholar 

  45. Chen J, Parades W, Gardner EL (1991) Chronic treatment with clozapine selectively decreases basal dopamine release in nucleus accumbens but not in caudate-putamen as measured byin vivobrain microdialysis: further evidence for depolarization block.Neurosci Lett122: 127–131

    Article  PubMed  CAS  Google Scholar 

  46. Maidment N, Marsden CA (1987) Acute administration of clozapine, thioridazine and metoclopramide increases extracellular DOPAC and decreases extracellular 5-HIAA, measured in the rat striatum of the rat usingin vivovoltammetry.Neuropharmacol26: 187–193

    Article  CAS  Google Scholar 

  47. Maidment N, Marsden C (1987) Repeated atypical neuroleptic administration: effects on central dopamine metabolism monitored byin vivovoltammetry.Europ JPharmacol136: 141–149

    Article  CAS  Google Scholar 

  48. Ichikawa J, Meltzer H (1990) The effects of chronic clozapine and haloperidol on basal dopamine release and metabolism in rat striatum and nucleus accumbens studied byin vivomicrodialysis.Eur JPharmacol176: 371–374

    Article  CAS  Google Scholar 

  49. Imperato A, Angelucci L (1989) The effects of clozapine and fluperlapine on thein vivorelease and metabolism of dopamine in the striatum and in prefrontal cortex of freely moving rats.Psychopharmacol Bull25: 383–389

    PubMed  CAS  Google Scholar 

  50. Invernizzi R, Morally F, Pozzi L, Semanin R (1990) Effects of acute and chronic clozapine on dopamine release and metabolism in the striatum of conscious rats.Br J Pharmacol100: 774–778

    Article  PubMed  CAS  Google Scholar 

  51. Chang W, Chen T, Yeh E (1987) Time-response curves of homovanillic acid in caudate and pre-frontal cortex following acute neuroleptic administration.Psychopharmacology93: 403–404

    Article  PubMed  CAS  Google Scholar 

  52. Li XM, Perry KW, Wong DT, Bymaster FP (1998) Olanzapine increasesin vivodopamine and norepinephrine release in rat prefrontal cortex, nucleus accumbens and striatum.Psychopharmacology136: 153–161

    Article  PubMed  CAS  Google Scholar 

  53. Graybiel AM (1990) Neurotransmitters and neuromodulation in the basal ganglia.Trends Neurosci13: 244–254

    Article  PubMed  CAS  Google Scholar 

  54. Groenewegen HJ, Meredith GE, Berendse HW, Voorn P, Wolters JG (1987) The compartmental organization of the ventral striatum. In: AR Crossman, MA Sambrook (eds):Neural mechanisms in disorders of movementLondon, John Libbey, 45–54

    Google Scholar 

  55. Groenewegen HJ, Berendse HW, Meredith GE, Haber SH, Voorn P, Wolters JG, Lohman AHM (1991) Functional anatomy of the ventral, limbic system-innervated striatum. In: P Willner, J Scheel-Krüger (eds):The mesolimbic dopamine system: From motivation to action.John Wiley and Sons, Chichester 19–59

    Google Scholar 

  56. Deutch AY, Cameron DS (1992) Pharmacological characterization of dopamine system in the nucleus accumbens core and shell.Neuroscience46: 49–56

    Article  PubMed  CAS  Google Scholar 

  57. Marcus MM, Nomikos GG, Svensson TH (1996) Differential actions of typical and atypical antipsychotic drugs on dopamine release in the core and shell of the nucleus accumbens.Eur Neuropsychopharmacol6: 29–38

    Article  PubMed  CAS  Google Scholar 

  58. Westerink BH, deBoer P, deVries JB, Kruse CG, Long SK (1998) Antipsychotic drugs induce similar effects on the release of dopamine and noradrenaline in the medial prefrontal cortex.Eur J Pharmacol361: 27–33

    Article  PubMed  CAS  Google Scholar 

  59. Moghaddam B, Bunney BS (1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: anin vivomicrodialysis study.JNeurochem54: 1755–1760

    Article  CAS  Google Scholar 

  60. Pehek EA, Yamamoto BK (1994) Differential effects of locally administered clozapine and haloperidol on dopamine efflux in the rat prefrontal cortex and caudate-putamen.JNeurochem63: 2118–2124

    Article  CAS  Google Scholar 

  61. Nylander I, Terenius L (1986) Chronic haloperidol and clozapine differentially affect dynorphin peptides and substance P in basal ganglia of the rat.Brain Res380: 34–41

    Article  PubMed  CAS  Google Scholar 

  62. Angulo JA, Cadet JL, McEwen BS (1990) Effects of typical and atypical neuroleptic treatment on protachykinin mRNA levels in the striatum of the rat.Neurosci Lett113: 217–221

    Article  PubMed  CAS  Google Scholar 

  63. Shibata K, Haverstick DM, Bannon MJ (1990) Tachykinin gene expression in rat limbic nuclei: Modulation by dopamine antagonists.J Pharmacol Exp Ther255: 388–392

    PubMed  CAS  Google Scholar 

  64. Merchant KM, Dobner PR, Dorsa DM (1992) Differential effects of haloperidol and cloza-pine on neurotensin gene transcription in rat neostriatum.JNeuroscience12: 652–663

    CAS  Google Scholar 

  65. Merchant KM, Dobie DJ, Filloux FM, Totzke M, Aravagiri M, Dorsa DM (1994) Effects of chronic haloperidol and clozapine treatment on neurotensin and c-fos mRNA in rat nesotriatal subregions.JPharmacol Exp Ther271: 460–471

    CAS  Google Scholar 

  66. Mercugliano M, Chesselet MF (1992) Clozapine decreases enkephalin mRNA in rat striatum.Neurosci Lett136: 10–14

    Article  PubMed  CAS  Google Scholar 

  67. Angulo JA, Cadet JL, Woolley CS, Suber F, McEwen BS (1990) Effects of chronic typical and atypical neuroleptic treatment on proenkephalin mRNA levels in the striatum and nucleus accumbens of the rat.J Neurochem54: 1889–1894

    Article  PubMed  CAS  Google Scholar 

  68. Marco E, Mao CC, Revuelta A, Pealta E, Costa E (1978) Turnover rates of gamma-aminobutyric acid in substantia nigra, n. caudatus, globus pallidus and n. accumbens of rats injected with cataleptogenic antipsychotics.Neuropharmacol17: 589–596

    Article  CAS  Google Scholar 

  69. Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes.Trends Neurosci12: 459–462

    Article  PubMed  CAS  Google Scholar 

  70. Dragunow M, Robertson GS, Faull RLM, Robertson HA, Jansen K (1990) D2 dopamine receptor antagonists induce fos and related proteins in striatal neurons.Neuroscience37: 287–294

    Article  PubMed  CAS  Google Scholar 

  71. Robertson GS, Fibiger HC (1992) Neuroleptics increase c-fos expression in the forebrain: Contrasting effects of haloperidol and clozapine.Neuroscience46: 315–328

    Article  PubMed  CAS  Google Scholar 

  72. Nguyen TV Kasofsky B, Birnbaum R, Cohen BM, Hyman SE (1992) Differential expression of c-fos and Zif 268 in rat striatum following haloperidol, clozapine and amphetamine.Proc Natl Acad Sci89: 4270–4274

    Article  PubMed  CAS  Google Scholar 

  73. Dilts RP Jr, Helton TE, McGinty JF (1993) Selective induction of fos and FRA immunoreactivity with the mesolimbic and mesostriatal dopaminergic terminal fields.Synapse13: 251–263

    Article  PubMed  CAS  Google Scholar 

  74. Deutch AY, Lee MC, Iadarola MJ (1992) Regionally specific effects of atypical anti-psychotic drugs on striatal fos expression: the nucleus accumbens shell as a locus of anti-psychotic action.Mol Cell Neurosci3: 332–341

    Article  PubMed  CAS  Google Scholar 

  75. Deutch AY, Duman RS (1996) The effects of antipsychotics on prefrontal cortical fos expression: cellular localization and pharmacological characterization.Neuroscience70: 377–389

    Article  PubMed  CAS  Google Scholar 

  76. Merchant KM, Figur LM, Evans DL (1996) Induction of c-fos mRNA in rat medial prefrontal cortex by antipsychotic drugs: role of dopamine D2 and D3 receptors.Cereb Cortex6: 561–570

    Article  PubMed  CAS  Google Scholar 

  77. Robertson GS, Matsumura H, Fibiger HC (1994) Induction patterns of fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity.J Pharmacol Exp Ther271: 1058–1066

    PubMed  CAS  Google Scholar 

  78. Robertson GS, Fibiger HC (1996) Effects of olanzapine on regional c-fos expression in rat forebrain.Neuropsychopharmacol14: 105–110

    Article  CAS  Google Scholar 

  79. Fink-Jensen A, Kristensen P (1994) Effects of typical and atypical neuroleptics on Fos protein expression in the rat forebrain.Neurosci Lett182: 115–118

    Article  PubMed  CAS  Google Scholar 

  80. MacGibbon GA, Lawlor PA, Bravo R, Dragunow M (1994) Clozapine and haloperidol produce a differential pattern of immediate early gene expression in rat caudate-putamen, nucleus accumbens, lateral septum and islands of Calleja.Mol Brain Res23: 21–32

    Article  PubMed  CAS  Google Scholar 

  81. Costall B, Naylor RJ (1976) A comparison of the abilities of typical neuroleptic agents and of thioridazine, clozapine, sulpiride and metoclopramide to antagonise the hyperactivity induced by dopamine applied intracerebrally to areas of the extrapyramidal and mesolimbic system.Europ JPharmacol40: 9–19

    Article  CAS  Google Scholar 

  82. Cools AR, Prinssen EPM, Ellenbroek BA (1995) The olfactory tubercle as a site of action of neuroleptics with an atypical profile in the paw test: effect of risperidone, prothipendyl, ORG 5222, sertindole and olanzapine.Psychopharmacology119: 428–439

    Article  PubMed  CAS  Google Scholar 

  83. Prinssen EPM, Ellenbroek BA, Stamatovic B, Cools AR (1995) Role of striatal dopamine D2 receptors in the paw test, an animal model for the therapeutic efficacy and extrapyramidal side-effects of neuroleptic drugs.Brain Res673: 283–289

    Article  PubMed  CAS  Google Scholar 

  84. Miller JC (1990) Induction of c-fos mRNA expression in rat striatum by neuroleptic drugs.J Neurochem54: 1453–1455

    Article  PubMed  CAS  Google Scholar 

  85. Rogue P, Vincendon G (1992) Dopamine D2 receptor antagonists induce immediate early genes in the rat striatum.Brain Res Bull29: 469–472

    Article  PubMed  CAS  Google Scholar 

  86. Guo N, Robertson GS, Fibiger HC (1992) Scopolamine attenuated haloperidol induced c-fos expression in the striatum.Brain Res588: 164–167

    Article  PubMed  CAS  Google Scholar 

  87. Guo N, Klitenick MA, Tham CS, Fibiger HC (1995) Receptor mechanisms mediating clozapine-induced c-fos expression in the forebrain.Neuroscience65: 747–756

    Article  PubMed  CAS  Google Scholar 

  88. Chiodo LA, Bunney BS (1985) Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons.JNeuroscience5: 2539–2544

    CAS  Google Scholar 

  89. Deutch AY, Duman RS (1996) The effects of antipsychotic drugs on fos protein expression in the prefrontal cortex: Cellular localization and pharmacological characterization.Neuroscience70: 377–389

    Article  PubMed  CAS  Google Scholar 

  90. Prinssen EPM, Ellenbroek BA, Cools AR (1994) Combined antagonism of adrenoceptors and dopamine and 5-HT receptors underlies the atypical profile of clozapine.Europ JPharmacol262: 167–170

    Article  CAS  Google Scholar 

  91. Cools AR, Prinssen EPM, Ellenbroek BA, Heeren DJ (1994) Role of olfactory tubercle and nucleus accumbens in the effects of classical and atypical neuroleptics: search for regional specificity. In: T Palamo, T Archer, R Beninger (eds):Strategies for studying brain disorders. vol 2Madrid, Farrand Press 33–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Ellenbroek, B.A., Cools, A.R. (2000). Regional selectivity of antipsychotic drugs. In: Ellenbroek, B.A., Cools, A.R. (eds) Atypical Antipsychotics. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8448-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8448-8_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9571-2

  • Online ISBN: 978-3-0348-8448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics