Skip to main content

Roles of carbonic anhydrases in the alimentary tract

  • Chapter
The Carbonic Anhydrases

Part of the book series: EXS 90 ((EXS,volume 90))

  • 711 Accesses

Abstract

Insight into the physiological role of carbonic anhydrases (CAs) can be derived from a knowledge of the cell types expressing the enzyme and by correlating the activity of the enzyme with the particular function at the cellular or subcellular site of its presence. Several approaches have been used to determine the location of CA at the tissue and intracellular levels. The specific activity of CA can be visualized by trapping the reaction product with a heavy metal. Hansson’s histochemical method, depending on cobalt trapping of CO2 produced by CA, has served to identify the enzyme at a number of sites (Korhonen et al., 1966; Hansson, 1967; O’Brien et al., 1977; Parkkila et al., 1989; Ridderstråle, 1991). The availability of specific antibodies to different isoenzymes, the development of modern immunocytochemical techniques and developments in molecular biology have also helped considerably to increase our understanding of the distribution and role of CA isoenzymes in the alimentary tract. Studies of the effects of CA inhibitors have implicated CAs in a variety of physiological processes, although several problems have been encountered with these inhibitors due to their unspecific mode of action. In addition, human and animal CA deficiencies may provide substantial improvements to our understanding of the individual contributions of each isoenzyme to physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen A, Carrol NJH (1985) Adherent and soluble mucus in the stomach and duodenum. Dig Dis Sci (suppl.) 30: 55S–62S

    Article  CAS  Google Scholar 

  • Balboni E, Lehninger AL (1986) Entry and exit pathways of CO2 in rat liver mitochondria respiring in a bicarbonate buffer system. J Biol Chem 261: 3563–3570

    PubMed  CAS  Google Scholar 

  • Been JM, Bills PM, Lewis D (1979) Microstructure of gallstones. Gastroenterology 76: 548–555

    PubMed  CAS  Google Scholar 

  • Benedetti A, Baroni GS, Marucci L, Mancini R, Jezequel AM, Orlandi F (1993) Regulation of intracellular pH in isolated periportal and perivenular rat hepatocytes. Gastroenterology 105: 1797–1805

    PubMed  CAS  Google Scholar 

  • Binder HJ, Foster ES, Budinger ME, Hayslett JP (1987) Mechanism of electroneutral sodium chloride absorption in distal colon of the rat. Gastroenterology 93: 449–455

    PubMed  CAS  Google Scholar 

  • Bogren H, Larsson K (1963) Crystalline components of biliary calculi. Scand J Clin Lab Invest 15: 457–462

    Article  PubMed  CAS  Google Scholar 

  • Buanes T, Grotmol T, Landsverk T, Rwder MG (1988) Secretin empties bile duct cell cytoplasm of vesicles when it initiates ductular HCO 3 secretion in the pig. Gastroenterology 95: 417–424

    PubMed  CAS  Google Scholar 

  • Buanes T, Grotmol T, Landsverk T, Nafstad P, Reder MG (1988) Effects of arterial pH and carbon dioxide on pancreatic exocrine H+/HCO 3 secretion and secretin-dependent trans-location of cytoplasmic vesicles in pancreatic duct cells. Acta Physiol Scand 133: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Cabiscol E, Levine RL. Carbonic anhydrase III (1995) Oxidative modification in vivo and loss of phosphatase activity during aging. J Biol Chem 270: 14742–14747

    Article  PubMed  CAS  Google Scholar 

  • Cabiscol E, Levine RL (1996) The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Natl Acad Sci USA 93: 4170–4174

    Article  PubMed  CAS  Google Scholar 

  • Charney AN, Egnor RW (1989) Membrane site of action of CO2 on colonic sodium absorption. Am J Physiol 256: C584–0590

    PubMed  CAS  Google Scholar 

  • Carter ND, Shiels A, Jeffery S, Heath R, Wilson CA, Phillips IR, Shephard EA (1984) Hormonal control of carbonic anhydrase III. Ann NY Acad Sci 429: 287–301

    Article  PubMed  CAS  Google Scholar 

  • Carter N, Jeffery S (1985) Carbonic anhydrase: Update and new horizons. Biochem Soc Trans 13: 531–533

    PubMed  CAS  Google Scholar 

  • Carter N, Wistrand PJ, Lönnerholm G (1989) Carbonic anhydrase localization to perivenous hepatocytes. Acta Physiol Scand 135: 163–167

    Article  PubMed  CAS  Google Scholar 

  • Cross SAM (1970) Ultrastructural localisation of carbonic anhydrase in rat stomach parietal cells. Histochemie 22: 219–225

    Article  PubMed  CAS  Google Scholar 

  • Davenport HW, Fisher RB (1938) Carbonic anhydrase in the gastrointestinal mucosa. J Physiol (London) 94: 16P–17P

    Google Scholar 

  • Davenport HW (1939) Gastric carbonic anhydrase. J Physiol (London) 97: 32–43

    CAS  Google Scholar 

  • Dodgson SJ, Forster RE, Schwed DA, Storey BT (1983) Contribution of matrix carbonic an-hydrase to citrulline synthesis in isolated guinea pig liver mitochondria. J Biol Chem 258: 7696–7701

    PubMed  CAS  Google Scholar 

  • Dodgson SJ, Forster RE, Storey BT (1984) The role of carbonic anhydrase in hepatocyte metabolism. Ann NYAcad Sci 429: 516–524

    Article  CAS  Google Scholar 

  • Dodgson SJ (1991) Carbonic anhydrases in the kidney. In: SJ Dodgson, RE Tashian, G Gros, ND Carter (eds): The carbonic anhydrases. Cellular Physiology and Molecular Genetics. New York, Plenum Press, 345–350

    Google Scholar 

  • Dodgson SJ (1991) Liver mitochondrial carbonic anhydrase (CA V), gluconeogenesis, and ureagenesis in the hepatocytes. In: SJ Dodgson, RE Tashian, G Gros, ND Carter (eds): The Carbonic Anhydrases. Cellular Physiology and Molecular Genetics. New York, Plenum Press, 297–306

    Google Scholar 

  • Elder JA, Lehninger AL (1973) Respiration-dependent transport of carbon dioxide into rat liver mitochondria. Biochemistry 12: 976–982

    Article  PubMed  CAS  Google Scholar 

  • Ewe K, Karbach U (1989) Functions of the Alimentary Canal. In: RF Schmidt, G Thews (eds): Human Physiology. Berlin, Springer Verlag, 693–734

    Google Scholar 

  • Feldman GM, Koethe JD, Stephenson RL (1990) Base secretion in rat distal colon: ionic requirements. Am J Physiol 258: G825–G832

    PubMed  CAS  Google Scholar 

  • Feldstein JB, Silverman DN (1984) Purification and characterization of carbonic anhydrase from the saliva of the rat. J Biol Chem 259: 5447–5453

    PubMed  CAS  Google Scholar 

  • Fernley RT (1988) Non-cytoplasmic carbonic anhydrases. TIBS 13: 356–359

    PubMed  CAS  Google Scholar 

  • Fernley RT, Farthing J, Cooper EJ (1995) Radioimmunoassay for salivary carbonic anhydrase in human parotid saliva. Archs Oral Biol 40: 567–569

    Article  CAS  Google Scholar 

  • Fleming RE, Parkkila S, Parkkila A-K, Rajaniemi H, Waheed A, Sly WS (1995) Carbonic anhydrase IV expression in rat and human gastrointestinal tract. Regional, cellular, and subcellular localization. J Clin Invest 96: 2907–2913

    Article  PubMed  CAS  Google Scholar 

  • Gleeson D, Smith ND, Boyer JL (1989) Bicarbonate dependent and independent intracellular pH regulatory mechanisms in rat hepatocytes. Evidence for Na+-HCO 3 cotransport. J Clin Invest 84: 312–321

    Article  PubMed  CAS  Google Scholar 

  • Gleeson D, Hood KA, Murphy GM, Dowling RH (1992) Calcium and carbonate ion concentrations in gallbladder and hepatic bile. Gastroenterology 102: 1707–1716

    PubMed  CAS  Google Scholar 

  • Goldfarb DS, Egnor RW, Charney AN (1988) Effects of acid-base variables on ion transport in rat colon. J Clin Invest 81: 1903–1910

    Article  PubMed  CAS  Google Scholar 

  • Grimes A, Paynter J, Walker ID, Bhave M, Mercer JFB (1997) Decreased carbonic anhydrase III levels in the liver of the mouse mutant “toxic milk” (tx) due to copper accumulation. Biochem J 327: 341–346

    Google Scholar 

  • Gustin MC, Goodman DB (1981) Isolation of brush-border membrane from the rabbit descending colon epithelium. Partial characterization of a unique K+-activated ATPase. J Biol Chem 256: 10651–10656

    PubMed  CAS  Google Scholar 

  • Hansson HPJ (1967) Histochemical demonstration of carbonic anhydrase activity. Histochemie 11: 112–128

    Article  PubMed  CAS  Google Scholar 

  • Hansson HPJ (1968) Histochemical demonstration of carbonic anhydrase activity in some epithelia noted for active transport. Acta Physiol Scand 68: 1–8

    Google Scholar 

  • Hazen SA, Waheed A, Sly WS, Lalloue KF, Lynch CJ (1996) Differentiation-dependent expression of CA V and the role of carbonic anhydrase isozymes in pyruvate carboxylation in adipocytes. FASEB J 10: 481–490

    PubMed  CAS  Google Scholar 

  • Helm JF, Dodds WJ, Hogan WJ, Soergel KH, Egide MS, Wood CM (1982) Acid neutralizing capacity of human saliva. Gastroenterology 83: 69–74

    PubMed  CAS  Google Scholar 

  • Helm JF, Dodds WJ, Pelc LR, Palmer DW, Hogan WJ, Teeter BC (1984) Effect of esophageal emptying and saliva on clearance of acid from the esophagus. N Engl J Med 310: 284–288

    Article  PubMed  CAS  Google Scholar 

  • Helm JF (1989) Role of saliva in esophageal function and disease. Dysphagia 4: 76–84

    Article  PubMed  CAS  Google Scholar 

  • Hennigar RA, Schulte BA, Spicer SS (1983) Immunolocalization of carbonic anhydrase iso-zymes in rat and mouse salivary and exorbital lacrimal glands. Anat Rec 207: 605–614

    Article  PubMed  CAS  Google Scholar 

  • Jeffery S, Edwards Y, Carter N (1980) Distribution of CA III in fetal and adult human tissue. Biochem Genet 18: 843–849

    Article  PubMed  CAS  Google Scholar 

  • Juvonen T, Parkkila S, Parkkila A-K, Niemelä O, Lajunen LHJ, Kairaluoma MI, Perämäki P, Rajaniemi H (1994) High activity carbonic anhydrase isoenzyme (CA II) in human gallbladder epithelium. J Histochem Cytochem 42: 1393–1397

    Article  PubMed  CAS  Google Scholar 

  • Kennedy ED, Rizzuto R, Theler J-M, Pralong W-F, Bastianutto C, Pozzan T, Wollheim CB (1996) Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in Aequorin-expressing INS-1 cells. J Clin Invest 98: 2524–2538

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H, Iwasaki H, Nishioka T, Matsumoto S (1959) Role of carbonic anhydrase in the bicarbonate excretion from salivary glands and mechanism of ionic excretion. Jpn J Physiol 9: 106–123

    Article  PubMed  CAS  Google Scholar 

  • Kivelä J, Parkkila S, Waheed A, Parkkila A-K, Sly WS, Rajaniemi H (1997) Secretory carbonic anhydrase isoenzyme (CA VI) in human serum. Clin Chem 43: 2318–2322

    PubMed  Google Scholar 

  • Kivelä J, Parkkila S, Metteri J, Parkkila A-K, Toivanen A, Rajaniemi H (1997) Salivary carbonic anhydrase VI concentration and its relation to basic characteristics of saliva in young men. Acta Physiol Scan 161: 221–225

    Article  Google Scholar 

  • Korhonen LK, Korhonen E, Hyyppä M (1966) Histochemical demonstration of carbonic anhydrase activity in the alimentary canal. Histochemie 6: 168–172

    Article  PubMed  CAS  Google Scholar 

  • Kumpulainen T (1981) Human carbonic anhydrase isoenzyme C. Effects of some fixatives on the antigenicity and improvements in the method of localization. Histochemistry 72: 425–431

    Article  PubMed  CAS  Google Scholar 

  • Kumpulainen T, Jalovaara P (1981) Immunohistochemical localization of carbonic anhydrase isoenzymes in the human pancreas. Gastroenterology 80: 796–799

    PubMed  CAS  Google Scholar 

  • Kumpulainen T (1984) Immunohistochemical localization of human carbonic anhydrase isozymes. Ann NY Acad Sci 429: 359–368

    Article  PubMed  CAS  Google Scholar 

  • Kurtin P, Charney AN (1984) Effect of arterial carbon dioxide tension on amiloride-sensitive sodium absorption in the colon. Am J Physiol 247: G537–G541

    PubMed  CAS  Google Scholar 

  • Kurtin P, Charney AN (1984) Intestinal ion transport and intracellular pH during acute respiratory alkalosis and acidosis. Am J Physiol 247: G24–G31

    PubMed  CAS  Google Scholar 

  • Lönnerholm G, Selking Ö, Wistrand PJ (1985) Amount and distribution of carbonic anhydrases CA I and CA II in the gastrointestinal tract. Gastroenterology 88: 1151–1161

    PubMed  Google Scholar 

  • MacDonald MJ, Chang CM (1985) Do pancreatic islets contain significant amounts of phosphoenolpyruvate carboxykinase or ferroactivator activity? Diabetes 34: 246–250

    Article  PubMed  CAS  Google Scholar 

  • MacDonald MJ (1995) Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J Biol Chem 270: 20051–20058

    PubMed  CAS  Google Scholar 

  • Metcalfe HK, Monson JP, Drew PJ, Iles RA, Carter ND, Cohen RD (1985) Inhibition of gluconeogenesis and urea synthesis in isolated rat hepatocytes by acetazolamide. Biochem Soc Trans 13: 255

    CAS  Google Scholar 

  • Mori M, Staniunas RJ, Barnard GF, Jessup JM, Steele GD, Chen LB (1993) The significance of carbonic anhydrase expression in human colorectal cancer. Gastroenterology 105: 820–826

    PubMed  CAS  Google Scholar 

  • Moseley RH, Meier PJ, Aronson PS, Boyer JL (1986) Na+/H+ exchange in rat liver basolateral but not canalicular plasma membrane vesicles. Am J Physiol 250: G35–G43

    PubMed  CAS  Google Scholar 

  • Noda Y, Takai Y, Iwai Y, Meenaghan MA, Mori M (1986) Immunohistochemical study of carbonic anhydrase in mixed tumours from major salivary glands and skin. Virchows Arch 408: 449–459

    Article  CAS  Google Scholar 

  • O’Brien P, Rosen S, Trencis-Buck L, Silen W (1977) Distribution of carbonic anhydrase within the gastric mucosa. Gastroenterol 72: 870–874

    Google Scholar 

  • Ogawa Y, Chang C-K, Kuwahara H, Hong S-S, Toyosawa S, Yagi T (1992) Immunoelectron microscopy of carbonic anhydrase isozyme VI in rat submandibular gland: Comparison with isozymes I and II. J Histochem Cytochem 40: 807–817

    Article  PubMed  CAS  Google Scholar 

  • Opayský R, Pastoreková S, Zelník V, Gibadulinová A, Stanbridge EJ, Závada J, Kettman R, Pastorek J (1996) Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics 33: 480–487

    Article  Google Scholar 

  • Parkkila S, Rajaniemi H (1989) Carbonic anhydrase activity in peripheral T-lymphocytes and appearance of the activity during their maturation in the thymus. A histochemical demonstration. Histochem 91: 479–482

    Article  CAS  Google Scholar 

  • Parkkila S, Kaunisto K, Rajaniemi L, Kumpulainen T, Jokinen K, Rajaniemi H (1990) Immunohistochemical localization of carbonic anhydrase isoenzymes VI, II, and I in human parotid and submandibular glands. J Histochem Cytochem 38: 941–947

    Article  PubMed  CAS  Google Scholar 

  • Parkkila S, Parkkila A-K, Vierjoki T, Ståhlberg T, Rajaniemi H (1993) Competitive time-resolved immunofluorometric assay for quantifying carbonic anhydrase VI in saliva. Clin Chem 39: 2154–2157

    PubMed  CAS  Google Scholar 

  • Parkkila S, Parkkila A-K, Juvonen T, Rajaniemi H (1994) Distribution of the carbonic anhydrase isoenzymes I, II, and VI in the human alimentary tract. Gut 35: 646–650

    Article  PubMed  CAS  Google Scholar 

  • Parkkila S, Parkkila A-K, Juvonen T, Lehto V-P, Rajaniemi H (1995) Immunohistochemical demonstration of the carbonic anhydrase isoenzymes I and II in pancreatic tumours. Histochem J 27: 133–138

    PubMed  CAS  Google Scholar 

  • Parkkila S, Parkkila A-K, Rajaniemi H (1995) Circadian periodicity in salivary carbonic anhydrase VI concentration. Acta Physiol Scand 154: 205–211

    Article  PubMed  CAS  Google Scholar 

  • Parkkila S, Parkkila A-K, Juvonen T, Waheed A, Sly WS, Saarnio J, Kaunisto K, Kellokumpu S, Rajaniemi H (1996) Membrane-bound carbonic anhydrase IV is expressed in the luminal plasma membrane of the human gallbladder epithelium. Hepatology 24: 1104–1108

    Article  PubMed  CAS  Google Scholar 

  • Parkkila S, Parkkila A-K (1996) Carbonic anhydrase in the alimentary tract. Roles of the different isoenzymes and salivary factors in the maintenance of optimal conditions in the gastrointestinal canal. Scand J Gastroenterol 31: 305–317

    Article  PubMed  CAS  Google Scholar 

  • Parkkila S, Parkkila A-K, Lehtola J, Reinilä A, Södervik H-J, Rannisto M, Rajaniemi H (1997) Salivary carbonic anhydrase protects gastroesophageal mucosa from acid injury. Dig Dis Sci 42: 1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Pastoreková S, Parkkila S, Parkkila A-K, Opayský R, Zelník V, Saarnio J, Pastorek J (1997) Carbonic anhydrase IX, MN/CA IX: Analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology 112: 398–408

    Article  PubMed  Google Scholar 

  • Rader MG (1992) The origin of and subcellular mechanisms causing pancreatic bicarbonate secretion. Gastroenterology 103: 1674–1684

    Google Scholar 

  • Renner EL, Lake JR, Scharschmidt BF, Zimmerli B, Meier PJ (1989) Rat hepatocytes exhibit basolateral Na+-HCO 3 cotransport. J Clin Invest 83: 1225–1235

    Article  PubMed  CAS  Google Scholar 

  • Richardson CT (1985) Pathogenic factors in peptic ulcer disease. Am J Med 79: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Ridderstråle Y (1991) Localization of carbonic anhydrase by chemical reactions. In: SJ Dodgson, RE Tashian, G Gros, N Carter (eds): The Carbonic Anhydrases. Cellular Physiology and Molecular Genetics. New York, Plenum Press, 133–144

    Google Scholar 

  • Reuss L, Stoddard JS (1987) Role of H+ and HCO 3 in salt transport in gallbladder epithelium. Annu Rev Physiol 49: 35–49

    Article  PubMed  CAS  Google Scholar 

  • Saarnio J, Parkkila S, Parkkila A-K, Haukipuro K, Pastoreková S, Pastorek J, Kairaluoma MI, Karttunen TJ (1998) Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/CA IX, with potential value as a marker of cell proliferation. Am J Pathol 153: 279–285

    Article  PubMed  CAS  Google Scholar 

  • Saarnio J, Parkkila S, Parkkila A-K, Waheed A, Casey MC, Zhou XY, Pastoreková S, Pastorek J, Karttunen T, Haukipuro K et al (1998) Immunohistochemistry of carbonic anhydrase isozyme IX (MN/CA IX) in human gut reveals polarized expression in the epithelial cells with the highest proliferative capacity. J Histochem Cytochem 46: 497–504

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Igarashi S-I, Amasaki T, Amasaki H, Nishita T, Kano Y, Asari M (1993) Comparative immunohistolocalization of carbonic anhydrase isozymes I, II and III in the equine and bovine digestive tract. Histochem J 25: 304–311

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Spicer SS, Tashian RE (1980) Ultrastructural localization of carbonic anhydrase in gastric parietal cells with the immunoglobulin-enzyme bridge method. Histochem J 12: 651–659

    Article  PubMed  CAS  Google Scholar 

  • Saarnio J, Pastorek J (1997) Carbonic anhydrase IX, MN/CA IX: Analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology 112: 398–408

    Article  PubMed  Google Scholar 

  • Sellin JH, DeSoignie R (1990) Short-chain fatty acid absorption in rabbit colon in vitro. Gastroenterology 99: 676–683

    PubMed  CAS  Google Scholar 

  • Shiffman ML, Sugarman HJ, Moore EW (1990) Human gallbladder mucosal function. Effect of concentration and acidification of bile on cholesterol and calcium solubility. Gastroenterology 99: 1452–1459

    PubMed  CAS  Google Scholar 

  • Spicer SS, Sens MA, Tashian RE (1982) Immunocytochemical demonstration of carbonic anhydrase in human epithelial cells. J Histochem Cytochem 30: 864–873

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Ge Z-H, Tashian RE, Martin-Hazen DJ, Schulte BA (1990) Comparative distribution of carbonic anhydrase isozymes III and II in rodent tissues. Am J Anat 187: 55–64

    Article  PubMed  CAS  Google Scholar 

  • Sugai N, Ito S (1980) Carbonic anhydrase, ultrastructural localization in the mouse gastric mucosa and improvements in the technique. J Histochem Cytochem 28: 511–525

    Article  PubMed  CAS  Google Scholar 

  • Sutor DJ, Wooley SE (1973) The nature and incidence of gallstones containing calcium. Gut 14: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Kaneko K (1987) Acid secretion in isolated guinea pig colon. Am J Physiol 253: G155–G164

    PubMed  CAS  Google Scholar 

  • Swenson ER (1991) Distribution and functions of carbonic anhydrase in the gastrointestinal tract. In: SJ Dodgson, RE Tashian, G Gros, ND Carter (eds): The Carbonic Anhydrases. Cellular Physiology and Molecular Genetics. New York, Plenum Press, 265–287

    Google Scholar 

  • Tashian RE (1989) The carbonic anhydrases: Widening perspectives on their evolution, expression and function. BioEssays 10: 186–192

    Article  PubMed  CAS  Google Scholar 

  • Veel T, Villanger O, Holthe MS, Cragoe EJ, Ruder MG (1992) Na+-H+ exchange is not important for secretin-dependent pancreatic HCO 3 secretion in the pig. Acta Physiol Scand 144: 239–246

    Article  PubMed  CAS  Google Scholar 

  • Wagner JD, Kurtin P, Charney AN (1985) Effect of systemic acid-base disorders on colonic intracellular pH and ion transport. Am J Physiol 249: G39–G47

    PubMed  CAS  Google Scholar 

  • Weinman SA, Reuss L (1982) Na+-H+ exchange at the apical membrane of Necturus gallbladder. J Gen Physiol 80: 299–321

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H, Iwasaki H, Nishioka T, Matsumoto S (1959) Role of carbonic anhydrase in the bicarbonate excretion from salivary glands and mechnism of ionic excretion. Jpn J Physiol 9: 106–123

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Parkkila, S. (2000). Roles of carbonic anhydrases in the alimentary tract. In: Chegwidden, W.R., Carter, N.D., Edwards, Y.H. (eds) The Carbonic Anhydrases. EXS 90, vol 90. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8446-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8446-4_23

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9570-5

  • Online ISBN: 978-3-0348-8446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics