Skip to main content

The Spectrum of Periodic Point Perturbations and the Krein Resolvent Formula

  • Conference paper
Differential Operators and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 117))

  • 340 Accesses

Abstract

We study periodic point perturbations H of a periodic elliptic operator H 0 on a connected complete non-compact Riemannian manifold X,endowed with an isometric, effective, properly discontinuous, and co-compact action of a discrete group Γ. Under some conditions H 0, we prove that the gaps of the spectrum σ (H) are labelled in a natural way by elements of the K 0-group of a certain C*-algebra. In particular, if the group Γ has the Kadison property then σ (H) has band structure. The Krein resolvent formula plays a crucial role in proving the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.S. Pavlov, The theory of extensions and explicitly solvable models (in Russian). Uspekhi Mat. Nauk 42 no. 6 (1987), 99–131; Engl. trans].: Russ. Math. Surv. 42 no. 6 (1987), 127–168.

    Article  MATH  Google Scholar 

  2. S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable models in quantum mechanics. Springer-Verlag, Berlin etc., 1988.

    Book  MATH  Google Scholar 

  3. R. Kronig and W.G. Penney, Quantum mechanics of electrons in crystal lattices. Proc. Roy. Soc. (London) 130A (1931), 499–513.

    Google Scholar 

  4. A. Grossmann, R. 110egh-Krohn and M. Mebkhout, The one-particle theory of periodic point interactions. Comm. Math. Phys. 77 (1080), 87–100.

    Article  Google Scholar 

  5. Yu.E. Karpeshina, Spectrum and eigenfunctions of Schrödinger operator with zero-range potential of the homogenous lattice type in three dimensional space (in Russian). Teor. i. Mat. Fiz. 57 (1983), 304–313; Engl. trans].: Theor. and Math. Phys. 57 (1983), 1156–1162.

    Google Scholar 

  6. S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Point interactions in two dimensions: Basic properties, approximations and applications to solid state physics. J. reine u. angew. Math. 380 (1987), 87–107.

    MATH  Google Scholar 

  7. T. Sunada, Group C* -algebras and the spectrum of a periodic Schrodinger operator on a manifold. Can. J. Math. 44 (1992), 180–193.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Brüning and T. Sunada, On the spectrum of periodic elliptic operators. Nagoya Math. J. 126 (1992), 159–171.

    MATH  Google Scholar 

  9. J. Brüning and T. Sunada, On the spectrum of gauge-periodic elliptic operators. Astérisque 210 (1992), 65–74.

    Google Scholar 

  10. M.G. Krein and H.K. Langer, Defect subspace and generalized resolvents of an Hermitian operators in the spaceII k (in Russian). Funk. Anal. i Prilozhen. 5, no. 2 (1971), 59–71; Engl. trans].: Funct. Anal. and its Appl. 5 (1971), 217–228.

    Google Scholar 

  11. J. Brüning and V. A. Geyler, Gauge periodic point perturbations on the Lobachevsky plane. Preprint SFB 288, Berlin, 1998.

    Google Scholar 

  12. T. Sunada, Euclidean versus non-euclidean aspects in spectral geometry. Progr. Theor. Phys. Suppl. 116 (1994), 235–250.

    Article  MathSciNet  MATH  Google Scholar 

  13. N.E. Hurt, Quantum chaos and mesoscopic systems. Mathematical methods in the quantum signatures of chaos. Kluwer Ac. Publ., Dordrecht etc., 1997.

    MATH  Google Scholar 

  14. M.L. Leadbeater, C.L. Foden and J. H. Burrougher, e.a. Magnetotransport in a non-planar two-dimensional electron gas. Phys. Rev. B. 52 (1995), 8629–8632.

    Article  Google Scholar 

  15. D.B. Efremov and M.A. Shubin, Spectral asymptotics of elliptic operators of the Schrödinger type on the Lobachevsky space (in Russian). Trudy Sem. I.G. Petrovsky 15 (1991), 3–32.

    MathSciNet  Google Scholar 

  16. M.A. Shubin, Spectral theory of elliptic operators on non-compact manifolds. Astérisque 207 (1992), 35–108.

    MathSciNet  Google Scholar 

  17. A.V. Bukhvalov, Applicatons of the method of the theory of order bounded operators in the L P -spaces (in Russian). Uspekhi Mat. Nauk 38 no. 6 (1983), 37–83.

    MathSciNet  Google Scholar 

  18. V.B. Korotkov, Integral operators (in Russian). Nauka, Novosibirsk, 1983.

    Google Scholar 

  19. V.A. Geyler, V.A. Margulis and I.I. Chuchaev, Zero-range potentials and Carleman operators (in Russian). Sibir. Mat. Zhurn. 36 (1995), 828–841; Engl. trans].: Siberian Math. J. 36 (1995), 714–726.

    Google Scholar 

  20. P.R. Halmos and V.S. Sunder, Bounded linear operators on L 2 -spaces. SpringerVerlag, New York etc., 1978.

    Book  Google Scholar 

  21. M.A. Shubin, Pseudo-difference operators and their Green functions (in Russian). Izv. AN SSSR. Ser. Mat. 49 (1985), 652–67]; Engl. transl.: Math. USSR. Izvestiya. 26 (1986), 605–622.

    MathSciNet  MATH  Google Scholar 

  22. S.A. Gredeskul, M. Zusman, Y. Avishai and M.Ya. Azbel, Spectral properties and localization of an electron in a two-dimensional system with point scatterers in a magnetic field. Phys. Reps. 288 (1997), 223–257.

    Article  Google Scholar 

  23. V.A. Geyler, The two-dimensional Schrödinger operators with a uniform magnetic field and its perturbation by periodic zero-range potentials (in Russian). Algebra i Analiz, 3, no. 3 (1991), 1–48; Engl. transl.: St.-Petersburg Math. J. 3 (1992), 489–532.

    Google Scholar 

  24. S. Albeverio and V.A. Geyler, The band structure of the general periodic SchrOdinger operator with point interactions (to be published).

    Google Scholar 

  25. Yu.G. Shondin, Semibounded local Hamiltonians for perturbation of the Laplacian supported by curves with angle points in R 4 (in Russian). Teoret. i Mat. Fiz. 106 (1996), 179–199.

    MathSciNet  Google Scholar 

  26. J. Bellissard, Gap labelling theorems for Schrödinger operators. In: From Number Theory to Physics. I Eds. Waldschmidt M. c.a. Springer-Verlag, Berlin etc., 1992, 538–630.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Brüning, J., Geyler, V.A. (2000). The Spectrum of Periodic Point Perturbations and the Krein Resolvent Formula. In: Adamyan, V.M., et al. Differential Operators and Related Topics. Operator Theory: Advances and Applications, vol 117. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8403-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8403-7_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9552-1

  • Online ISBN: 978-3-0348-8403-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics