Skip to main content

A Dimension-free Carleson Measure Inequality

  • Conference paper
Complex Analysis, Operators, and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 113))

Abstract

We consider the following Carleson measure inequality for the Poisson integrals P[f] in ℝ n+1+ :

$$\left\| {P[f]} \right\|_{L^p } (\mathbb{R}_ + ^{n + 1} ,d\mu ) \leqslant C\mathcal{H}\left[ \mu \right]^{\frac{1} {p}} \left\| f \right\|L^P (\mathbb{R}^n ),{\text{ }}f \in L^p (\mathbb{R}^n )$$

, where 1 < p < ∞,μ is a Borel measure on ℝ n+1+ , and \(\kappa [\mu ] = {{\sup }_{B}}\tfrac{{\mu (\hat{B})}}{{|B|}}\) is the Carleson norm of μ Here \(\hat{B} = \{ (x,t):x \in B,0 < t < r\}\) = {(x, t): x ∈ B, 0 < t < r} is a cylinder whose base is the n-ball B of radius r. S. A. Vinogradov asked whether this inequality is fulfilled with a constant C = C p independent of the dimension n. We prove this inequality for p > 2 and discuss some related results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Andersson, Topics in Complex Analysis, Springer–Verlag, Berlin–Heidelberg–New York, 1997.

    Google Scholar 

  2. L. Carleson, Interpolation by bounded analytic functions and the corona problem,Ann. Math., 76 (1962), 547–559.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Grafakos and J. Kinnunen, Sharp inequalities for maximal functions associated with general measures,Proc. Roy. Soc. Edinburgh, Sect. A, 128 (1998), 717–723.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Grafakos and C. Morpurgo, A Selberg integral formula and applications, Preprint, (1998).

    Google Scholar 

  5. R. Fefferman, Strong differentiation with respect to measures, Amer. J. Math., 103 (1981), 33–40.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Hörmander, L P estimates for (pluri) subharmonic functions, Math. Scand., 20 (1967), 65–78.

    MathSciNet  MATH  Google Scholar 

  7. N. J. Kalton and I. E. Verbitsky, Nonlinear equations and weighted norm inequalities, to appear in Trans. A.M.S.

    Google Scholar 

  8. N. K. Nikolskii, Treatise on the Shift Operator, Springer—Verlag, Berlin—Heidelberg–New York, 1986.

    Book  Google Scholar 

  9. E. M. Stein, Harmonic Analysis: Real-Variable Methods Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1983.

    Google Scholar 

  10. E. M. Stein, The development of square functions in the work of A. Zygmund, Bull. A.M.S., 7 (1982), 359–376.

    Article  MATH  Google Scholar 

  11. E. M. Stein and J.-O. Strömberg, Behavior of maximal functions in R n for largen, Ark. för Mat., 21 (1983), 259–269.

    Article  MATH  Google Scholar 

  12. E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 1971.

    Google Scholar 

  13. I. E. Verbitsky and R. L. Wheeden, Weighted norm inequalities for integral operators, Trans. A.M.S., 350 (1998), 3371–3391.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. A. Vinogradov, Free Interpolation in Spaces of Analytic Functions, Doct. Dissertation, Leningrad (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this paper

Cite this paper

Verbitsky, I.E. (2000). A Dimension-free Carleson Measure Inequality. In: Havin, V.P., Nikolski, N.K. (eds) Complex Analysis, Operators, and Related Topics. Operator Theory: Advances and Applications, vol 113. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8378-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8378-8_31

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9541-5

  • Online ISBN: 978-3-0348-8378-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics