Skip to main content

Averaging and climate models

  • Conference paper
Stochastic Climate Models

Part of the book series: Progress in Probability ((PRPR,volume 49))

Abstract

It is natural to view climate as a slow motion governed by a set of equations depending on weather considered as a fast motion governed by another set of equations. This leads to the averaging setup which is discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.B. Anosov, Averaging in systems of ordinary differential equations with fast oscillating solutions, Izv. Acad. Nauk SSSR Ser. Mat, 24 (1960), 731–742 (Russian).

    MathSciNet  Google Scholar 

  2. L. Arnold, Hasselmann’s program revisited: the analysis of stochasticity in deterministic climate models, this Proceedings.

    Google Scholar 

  3. D.K. Arrowsmith and C.M. Place, An Introduction to Dynamical Systems, (1990), Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  4. M. Brin and M. Freidlin, On stochastic behavior of perturbed Hamiltonian systems, Ergod. Th. & Dynam. Sys., 20 (2000), 55–76.

    Article  MathSciNet  MATH  Google Scholar 

  5. N.N. Bogolyubov and Yu.A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations, (1961), Hindustan Publ. Co., Delhi.

    Google Scholar 

  6. G. Contreras, Regularity of topological and metric entropy of hyperbolic flows, Math. Z., 210 (1992), 97–111.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.I. Freidlin, The averaging principle and theorems on large deviations, Russ. Math. Surv., No. 5, 33 (1978), 107–160.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.I. Preidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, 2nd ed., (1998), Springer-Verlag, New York.

    Book  Google Scholar 

  9. G. Gallavotti, Chaotic hypotesis and universal large deviations properties, Doc. Math. J. DMV, Extra Volume ICM 1998, I(1998), 205–233.

    MathSciNet  Google Scholar 

  10. K. Hasselmann, Stochastic climate models, Part I. Theory, Tellus, 28 (1976), 473–485.

    Article  Google Scholar 

  11. D. Husemoller, Fibre Bundles, 3rd ed., (1994), Springer-Verlag, New York.

    Google Scholar 

  12. R.Z. Khasminskii, On stochastic processes defined by differential equations with a small parameter, Th. Probab. Appl., 11 (1966), 211–228.

    Article  Google Scholar 

  13. R.Z. Khasminskii, On the averaging principle for Itô stochastic differential equations, Kibernetika (Prague), 4 (1968), 260–279 (Russian).

    Google Scholar 

  14. Yu. Kifer, Principal eigenvalues, topological pressure, and stochastic stability of equilibrium states, Israel J. Math., 70 (1990), 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu. Kifer, Averaging in dynamical systems and large deviations, Invent. Math., 110 (1992), 337–370.

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu. Kifer, Limit theorems in averaging for dynamical systems, Ergod. Th.& Dynam. Sys., 15 (1995), 1143–1172.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, (1995), Cambridge Univ. Press, Cambridge.

    Book  MATH  Google Scholar 

  18. M.A. Krasnoselskii and S.G. Krein, On the averaging principle in nonlinear mechanics, Uspekhi Mat. Nauk, No. 3, 10 (1955), 147–152 (Russian).

    MathSciNet  Google Scholar 

  19. P. Lochak and C. Meunier, Multiple Averaging for Classical Systems, (1988), Springer-Verlag, New York.

    Book  Google Scholar 

  20. E. Pardoux and A.Yu. Veretennikov, On Poisson equation and diffusion approximationll, Preprint, (2000).

    Google Scholar 

  21. J.A. Sanders and F.Verhurst, Averaging Methods in Nonlinear Dynamical Systems, (1985), Springer-Verlag, Berlin.

    Google Scholar 

  22. A.Yu. Veretennikov, On the averaging principle for systems of stochastic differential equations, Math. USSR Sbornik, 69 (1991), 271–284.

    MathSciNet  MATH  Google Scholar 

  23. A.Yu. Veretennikov, On large deviations in the averaging principle for SDEs with “full dependence”, Ann. Probab., 27 (1999), 284–296.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Waddington, Large deviations asymptotics for Anosov flows, Ann. Inst. H.Poincare (Ser. Anal. Non Lineaire), 13 (1996), 445–484.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Kifer, Y. (2001). Averaging and climate models. In: Imkeller, P., von Storch, JS. (eds) Stochastic Climate Models. Progress in Probability, vol 49. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8287-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8287-3_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9504-0

  • Online ISBN: 978-3-0348-8287-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics