Skip to main content

The Mathematics of M-Theory

  • Conference paper
European Congress of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 201))

  • 1384 Accesses

Abstract

String theory, on its modern incarnation M-theory, gives a huge generalization of classical geometry. I indicate how it can be considered as a two-parameter deformation, where one parameter controls the generalization from points to loops, and the other parameter controls the sum over topologies of Riemann surfaces. The final mathematical formulation of M-theory will have to make contact with the theory of vector bundles, K-theory and non-commutative geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Banks, W. Fischler, S. H. Shenker and L. Susskind, M Theory as a matrix model: a conjecture, Phys. Rev. D55 (1997) 5112–5128, hep-th/9610043.

    MathSciNet  Google Scholar 

  2. A. Connes, M. Douglas and A. Schwarz, Noncommutative geometry and matrix theory: compactifications on tori, JHEP 9802 (1998) 003, hep-th/9711162.

    Article  MathSciNet  Google Scholar 

  3. D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry (Mathematical Surveys and Monographs, No. 68.), AMS, 1999.

    MATH  Google Scholar 

  4. Ph. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory (Graduate Texts in Contemporary Physics), Springer-Verlag, 1996.

    Google Scholar 

  5. R. Dijkgraaf, Les Houches Lectures on Fields, Strings and Duality, in Quantum Symmetries, les Houches Session LXIV, Eds. A. Connes, K. Gawedzki, and J. Zinn-Justin, North-Holland, 1998, hep-th/9703136.

    Google Scholar 

  6. M. Douglas, Branes within branes, hep-th/9512077.

    Google Scholar 

  7. L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990) 193–207; Hilbert Schemes of Zero-dimensional Sub-schemes of Smooth Varieties, Lecture Notes in Mathematics 1572 Springer-Verlag, 1994.

    Google Scholar 

  8. M. Green, J. Harvey and G. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Gray. 14 (1997) 47–52, hep-th/9605033.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Hitchin, Lectures on special Lagrangian submanifolds, math/9907034.

    Google Scholar 

  10. D. Huybrechts, Compact hyperkähler manifolds: basic results, alg-geom/9705025.

    Google Scholar 

  11. J. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231–252, hep-th/9711200.

    MathSciNet  MATH  Google Scholar 

  12. Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, AMS, 1999.

    Google Scholar 

  13. J. Polchinski, Dirichlet-branes and Ramond-Ramond charges,Phys. Rev. Lett. 75 (1995) 4724–4727, hep-th/9510017.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Polchinski, String Theory (Cambridge Monographs on Mathematical Physics), Cambridge University Press, 1998.

    Book  Google Scholar 

  15. G. Segal, The definition of conformal field theory, preprint; Two dimensional conformal field theories and modular fanctors, in IXth International Conference on Mathe-matical Physics,. B. Simon, A. Truman and I. M. Davies Eds. (Adam Hilger, Bristol, 1989).

    Google Scholar 

  16. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 9909 (1999) 032, hep-th/9908142.

    Article  MathSciNet  Google Scholar 

  17. A. Sen and B. Zwiebach, Tachyon condensation in string field theory, JHEP 0003 (2000) 002, hep-th/9912249.

    Article  MathSciNet  Google Scholar 

  18. E. Witten, String theory in various dimensions, Nucl. Phys. B 443 (1995) 85, hep-th/9503124.

    Google Scholar 

  19. E. Witten, Bound states of strings and p-branes, Nucl. Phys. B460 (1996) 335, hep-th/9510135.

    Article  MathSciNet  Google Scholar 

  20. E. Witten, D-branes and K-theory, JHEP 9812 (1998) 019, hep-th/9810188.

    Article  MathSciNet  Google Scholar 

  21. B. Zwiebach, Closed string field theory: quantum action and the B- V master equation, Nucl. Phys. B390 (1993) 33–152, hep-th/9206084.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Dijkgraaf, R. (2001). The Mathematics of M-Theory. In: Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S. (eds) European Congress of Mathematics. Progress in Mathematics, vol 201. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8268-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8268-2_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9497-5

  • Online ISBN: 978-3-0348-8268-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics