Skip to main content

Abstract

This paper is concerned with the regularity of the solutions to the Neumann problem in Lipschitz domains SZ contained in Rd. Especially, we consider the specific scaleB r s(L (Q)) 117 = s/d + 1/p, of Besov spaces. The regularity of the variational solution in these Besov spaces determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. We show that the solution to the Neumann problem is much smoother in the specific Besov scale than in the usual LP-Sobolev scale which justifies the use of adaptive schemes. The proofs are performed by combining some recent regularity results derived by Zanger [23] with some specific properties of harmonic Besov spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon, A. Douglis, and L. Nierenberg, Estimates near the boundary for solutions to elliptic partial differential equations satisfying general boundary conditions, I. Comm. Pure Appl. Math. 12 (1959), 623–727.

    Article  MathSciNet  MATH  Google Scholar 

  2. C.K. Chui An Introduction to Wavelets Academic Press, Boston, 1992.

    MATH  Google Scholar 

  3. A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator equations — Convergence rates Math. Comp. 70 (2001), 27–75.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Cohen, W Dahmen, and R. DeVore, Adaptive wavelet methods II: Beyond the elliptic case, IGPM-Preprint No. 199, RWTH Aachen, 2000.

    Google Scholar 

  5. B.E.J. Dahlberg and C.E. Kenig, Hardy spaces and the Neumann problem in LP for Laplace’s equation in Lipschitz domains, Annals of Math. 125 (1987), 437–466.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Dahlke Wavelets: Construction Principles and Applications to the Numerical Treatment of Operator Equations Shaker Verlag, Aachen, 1997.

    Google Scholar 

  7. S. Dahlke, Besov regularity for second order elliptic boundary value problems with variable coefficients Manuscripta Math. 95 (1998), 59–77.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Dahlke, Besov regularity for elliptic boundary value problems in polygonal domains Appl. Math. Letters 12 (1999), 31–36.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Dahlke, W. Dahmen, R. Hochmuth, and R. Schneider, Stable multiscale bases and local error estimation for elliptic problems Appl. Numer. Math. 8 (1997), 21–47.

    Article  MathSciNet  Google Scholar 

  10. S. Dahlke, W. Dahmen, and K. Urban, Adaptive wavelet methods for saddle point problems — Optimal convergence rates, Report 01–07, Zentrum fiir Technomathematik, Universitat Bremen, 2001.

    Google Scholar 

  11. S. Dahlke and R. DeVore, Besov regularity for elliptic boundary value problems Comm. Partial Differential Equations 22 (1&2) (1997), 1–16.

    MathSciNet  Google Scholar 

  12. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Math61. SIAM, Philadelphia, 1992.

    Book  Google Scholar 

  13. R. DeVore, Nonlinear approximation Acta Numerica 7 (1998), 51–150.

    Article  MathSciNet  Google Scholar 

  14. R. DeVore, B. Jawerth, and V. Popov, Compression of wavelet decompositions Amer. J. Math. 114 (1992), 737–785.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. DeVore and V. Popov, Interpolation of Besov spaces Trans. Amer. Math. Soc. 305 (1988), 397–414.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Fabes, 0. Mendez, and M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains J. of Funct. Anal. 159 (1998), 323–368.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Jerison and C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains J. of Funct. Anal. 130 (1995), 161–219.

    Article  MathSciNet  MATH  Google Scholar 

  18. C.E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems,CBMS Regional Conference Series in Math. 83 AMS, Providence, Rhode Island, 1994

    Google Scholar 

  19. Y. Meyer, Wavelets and Operators, Cambridge Studies in Advanced Mathematics vol. 37, Cambridge, 1992.

    Google Scholar 

  20. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

    Google Scholar 

  21. G. Verchota, Layer potentials and regularity of the Dirichlet problem for Laplace’s equation J. of Funct. Anal. 59 (1984), 572–611.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge University Press, 1997.

    Book  Google Scholar 

  23. D. Zanger, The inhomogeneous Neumann problem in Lipschitz domains Comm. Partial Differential Equations 25 (9&10) (2000), 1771–1808.

    MathSciNet  MATH  Google Scholar 

  24. D. Zanger, Regularity and Boundary Variations for the Neumann Problem, Ph.D. thesis, Massachusetts Institute of Technology, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Dahlke, S. (2003). Besov Regularity for the Neumann Problem. In: Haroske, D., Runst, T., Schmeisser, HJ. (eds) Function Spaces, Differential Operators and Nonlinear Analysis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8035-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8035-0_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9414-2

  • Online ISBN: 978-3-0348-8035-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics