Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 313 Accesses

Abstract

Tsunami generation from submarine landslides depends mainly on the volume of the slide material and also on other factors which include: angle of the slide, water depth, density of the slide material, the speed with which the material moves, duration of the slide, etc. Based on an incomplete data set of volume V of slide versus maximum amplitude H of the resulting tsunami waves, gleaned through available literature, a simple linear regression relationship was developed. Another partial data set was developed also from published literature, on V versus H values, based on numerical models. It was found that the agreement between the results of the numerical simulations and the observations is rather poor. It is not clear why this is so, and which data set is of questionable relevance. This is not to cast doubt on numerical models that do not use volume of the slide in an explicit manner

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anon(1980),Tsunami Struck the French Rivera,International Tsunami Information Centre, Newsletter, 13(1), 10.

    Google Scholar 

  • Blyth, F. G. H. and De Fretias, M. H., A Geology for Engineers (Edward Arnold, Pitman Press, Bath 1974).

    Google Scholar 

  • Bolt, B. A., Horn, W. L., Macdonald, G. A., and Scott, R. F. Geological Hazards (Springer-Verlag, Berlin, 1975) 328 pp.

    Google Scholar 

  • Bornhold, B. D. and Harper, J. R., Engineering Geology of the Coastal and Nearshore Canadian Cardillera, Proc. 8th Int. Congress, Int. Assoc. for Engineering Geology and the Environment, Sept 98

    Google Scholar 

  • Vancouver, Canada (A.A. Balkema/Rotterdam/Brookfiled, 1998) pp. 63–75.

    Google Scholar 

  • Campbell, P. A. and Nottingham, D. (1999), Anatomy of a Landslide-Created Tsunami at Skagway Alaska, November 3, 1994, Science of Tsunami Hazards 17(1), 19–48.

    Google Scholar 

  • Cornforth, D. H. and LOwell, J. A., The 1994 submarine slope failure at Skagway, Alaska. In: Landslides, Vol. 1 (K. Senneset ed.) (Balkema, Rotterdam, 1996) pp. 527–531.

    Google Scholar 

  • Harbitz, C. B., Pedesen, G., and Gjevik, B. (1993), Numerical Simulation of Large Water Waves Due to Landslides J. of Hydraulic Engin. 19(12), 1325–1342.

    Article  Google Scholar 

  • Heinrich, P. (1992), Nonlinear Water Waves Generated by Submarine and Aerial Landslides, J. of Water Ways, Port Coastal and Ocean Engin. ASCE, 118(3), 249–266.

    Article  Google Scholar 

  • Jiang, L. and Leblond, P. H. (1992), The Coupling of a Submarine Slide and the Surface Waves which it Generates J. of Geo. Phys. Res. 97(C8), 12,731–744.

    Google Scholar 

  • Jiang, L. and Leblond, P. H. (1993), Three-Dimensional Modeling of Tsunami Generation Due to a Submarine Mudslide, J. of Phys. Oceanography. 24(3), 559–572.

    Article  Google Scholar 

  • Kulikov, E. A., Fine, I. V., Rabinovich, A. B., Bornhold, B. D., and Thomson, R. E. (1999), Numerical Simulation of Submarine Landslides and Tsunami in the Strait of Georgia Proc. of the 1999 Canadian Coastal Conf. May 1999, Victoria, BC, Canada, 2, 845–862.

    Google Scholar 

  • Kulikov E. A. Rabinovich, A. B., Thomson, R. E., and Bornhold, B. D. (1996), The LandslideTsunami of November 3, 1994, Skagway Harbor, Alaska J. of Geo. Phys. Res. 101(C3), 6609–6615.

    Google Scholar 

  • Mader, C. O. (1997) Modelling the Skagway Tsunami Science of Tsunami Hazards 15(1), 41–48.

    Google Scholar 

  • Mclean, A. C. and GRIBBLE, C. D., Geology for Civil Engineers (George Allen and UNWIN, London, 1979), 310 pp.

    Google Scholar 

  • Muller, D. (1994), Physical Modelling and Field Measurements of Impulse Waves, Proc. of the Int. Symp: Waves-Physical and Numerical Modelling, Univ. of British Columbia, Vancouver, Canada, Aug. 1994, I, 307–315.

    Google Scholar 

  • Murty T. S. (1979), Submarine Slide-generated Water Waves in Kitimat Inlet, British Columbia J. Geo. Phys. Res. 84(C12), 7777–7779.

    Article  Google Scholar 

  • Nottingham, D. (1999), October 166 Tsunami, personal communication. 4 pp.

    Google Scholar 

  • Rabinovich, A. B., Thomson, R. E., Kulikov, E. A., BORHNOLD, B. D., and FINE, I.V. (1999), The Landslide Generated Tsunami of November 3, 1994 in Skagway Harbor, Alaska: A Case Study, Geo. Phys. Res. Lett. 26(19), 3009–3012.

    Google Scholar 

  • Raichlen, F., Lee, J. J., Petroef, C., and Watts, P. (1996), The Generation of Waves by a Landslide:Skagway, Alaska-A Case Study, Chapter 101 in Coastal Engineering 1996, (B.L. Edge ed.), Proc. of 25th Int. Conf., ASCE 2, 1293–1306.

    Google Scholar 

  • Rubino A., Backhaus, J. O., and Pierini, S. (1994), Tsunamis Generated by Mud Slides, Int. Symp:

    Google Scholar 

  • Waves-Physical and Numerical Modelling, Univ. of B.C. Vancouver, Canada, 466–473.

    Google Scholar 

  • Rzadkiewicz, R., Heinrich, P., Savoye, B., and Bourillet, J. F. (1998), Numerical Modelling of a Land

    Google Scholar 

  • Slide Tsunami: The 1979 Nice event (French Riviera), Abstract, Int. Conf. on Tsunamis, Paris, France,May 1998, 26–28.

    Google Scholar 

  • Streim, H. L. and Miloh, T. (1976), Tsunamis Induced by Submarine Slumpings off the Coast of Israel Int. Hydrographie Rev. LIII(2), 41–55.

    Google Scholar 

  • Tsiji, Y. and Husni, M. (1998), The landslide tsunami of Waiteba Bay of July 19, 1979, Lomblen Island, Indonesia,Prof. of Int. Workshop on Tsunami Disaster Mitigation, January 1998, Tokyo, Japan, Japan Meteorological Agency and Science and Technology Agency, 87.

    Google Scholar 

  • Watts, P. (1998), Wavemaker Curves for Tsunamis Generated by Underwater Landslides. J. of Waterway, Port, Coastal and Ocean Engin. ASCE 124(3), 127–137.

    Article  Google Scholar 

  • Whitten, D. G. A. and Brooks, J. R. V., The Penguin Dictionary of Geology (Penguin Books. New York, 1981), 493 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Murty, T.S. (2003). Tsunami Wave Height Dependence on Landslide Volume. In: Bardet, JP., Imamura, F., Synolakis, C.E., Okal, E.A., Davies, H.L. (eds) Landslide Tsunamis: Recent Findings and Research Directions. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7995-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7995-8_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6033-7

  • Online ISBN: 978-3-0348-7995-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics