Skip to main content

Redesign of aspartate aminotransferase specificity to that of tyrosine aminotransferase

  • Conference paper
Biochemistry of Vitamin B6 and PQQ

Part of the book series: Advances in Life Sciences ((ALS))

Summary

The values of kcat/Km are strongly correlated with chain length for the reactions of E. coli tyrosine aminotransferase, but are nearly independent of this variable for aspartate aminotransferase. Both enzymes exhibit nearly equal reactivity with dicarboxylic acid substrates. Six key amino acid differences were identified that were found to be responsible for 80% of the specificity difference. It is postulated that a major role for Arg292 in aspartate transaminase is to exclude nonspecific substrates by keeping the enzyme in an open inactive form. The free energy to close the enzyme into its active conformation derives from association with specific ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bradley, M., Biicheler, U. S., and Walsh, C. T. (1991) Redox enzyme engineering: conversion of human glutathione reductase into a trypanothione reductase. Biochemistry 30: 6124–6127.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, C. R., Wilks, H. M., Halsall, D. J., Atkinson, T., Clarke, A. R., Muirhead, H., and Holbrook, J. J. (1991) Design and synthesis of new enzymes based on the lactate dehydrogenase framework. Phil. Trans. R. Soc. Lond. B 332: 177–184.

    Article  CAS  Google Scholar 

  • Estell, D. A., Graycar, T. P., Miller, J. V., Powers, D. B., Burnier, J. P., Ng, P. G., and Wells, J. A. (1986) Probing steric and hydrophobic effects on enzyme-substrate interactions by protein engineering. Science 233: 659–663.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Inoue, K., Nagata., T., Kuramitsu, S., and Kagamiyama, H. (1993) Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase. Biochemistry 32: 12229–12239.

    Article  PubMed  CAS  Google Scholar 

  • Hedstrom,.L., Szilagyi, L., Rutter, W. J. (1992) Converting trypsin to chymotrypsin: the role of surface loops. Science 255: 1249–1253.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, G. B., Murgolo, N. J., Kuriyan, J., Osapay, K., Kominos, D., Berry, A., Scrutton, N. S., Hinchliffe, N. W., Perham, R. N., and Cerami, A. (1991) Engineering the substrate specificity of glutathione reductase toward that of trypanothione reduction. Proc. Natl. Acad. Sci. 88: 8769–8773.

    Article  PubMed  CAS  Google Scholar 

  • Julin, D. A., and Kirsch, J. F. (1989) Kinetic isotope effect studies on aspartate aminotransferase: evidence for a concerted 1,3 prototropic shift mechanism for the cytoplasmic isozyme and L-aspartate and dichotomy in mechanism. Biochemistry 28: 3825–3833.

    Article  PubMed  CAS  Google Scholar 

  • Kiick, D. M. and Cook, P. F. (1983) pH studies toward the elucidation of the auxiliary catalyst for pig heart aspartate aminotransferase. Biochemistry 22: 375–382.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch, J. F., Eichele, G., Ford, G. C., Vincent, M. G., Jansonius, J. N., Gehring, H., and Christen, P. (1984) Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J. Malec. Biol. 174: 497–525.

    Article  CAS  Google Scholar 

  • Powell, J. T. and Morrison, J. F. (1978) The purification and properties of the aspartate aminotransferase and aromatic-amino-acid aminotransferase from Escherichia coli. Eur J. Biochem. 87: 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Malashkevich, V. N., Toney, M. D., and Jansonius, J. N. (1993) Crystal structures of true enzymatic reaction intermediates: aspartate and glutamate ketimines in aspartate aminotransferase. Biochemistry 32: 13451–13462.

    Article  PubMed  CAS  Google Scholar 

  • Velick, S. G. and Vavra, J. (1962) A kinetic and equilibrium analysis of the glutamic oxaloacetate transaminase mechanism. J. Biol. Chem. 237: 2109–2122.

    PubMed  CAS  Google Scholar 

  • Wells, J. A., Powers, D. B., Bott, R. R., Graycar, T. P., and Estell, D. A. (1987) Designing substrate specificity by protein engineering of electrostatic interactions. Proc. Natl. Acad. Sci. U. S. A. 84: 1219–1223.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Kirsch, J.F., Onuffer, J.J. (1994). Redesign of aspartate aminotransferase specificity to that of tyrosine aminotransferase. In: Marino, G., Sannia, G., Bossa, F. (eds) Biochemistry of Vitamin B6 and PQQ. Advances in Life Sciences. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7393-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7393-2_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7395-6

  • Online ISBN: 978-3-0348-7393-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics