Skip to main content

Approximation of Discrete Probability Distributions in Spherical Stereology

  • Chapter
Inverse Problems

Abstract

If in spherical stereology the actual radius of spheres obeys a discrete probability distribution with unknown jump points the solution of the relevant Abel integral equation is not continuous, and hence the supremum norm is inappropriate for estimating the error of an approximation. We show that the backward Euler method converges in the L1-norm, also in the more general case that the distribution function is a linear combination of Heaviside functions superimposed on a Lipschitz-continuous background. We treat both cases:

  1. (a)

    cutting plane (first kind integral equation),

  2. (b)

    cutting slice (second kind integral equation).

For convenience (in order to avoid a superficial nonlinearity) we work with number densities and corresponding cumulative functions instead of with probability densities and distribution functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.S. Anderssen and A.J. Jakeman: Product integration for particle size distributions. Utilitas Mathematica 8 (1975), 111–126.

    Google Scholar 

  2. G. Bach: Über die Größenverteilung von Kugelschnitten in durchsichtigen Schnitten endlicher Dicke. Zeitschrift für wissenschaftliche Mikroskopie 64 (1959), 265–270.

    Google Scholar 

  3. V.L. Bakke and Z. Jackiewicz: Stability analysis of product 0-methods for Abel integral equations of the second kind. Num. Math. 48 (1986), 127–136.

    Article  Google Scholar 

  4. N.G. de Bruijn and P. Erdös: On a recursion formula and on some Tauberian theorems. Journal of Research of the National Bureau of Standards 50 (1953), 161–164.

    Google Scholar 

  5. R.F. Cameron and S. McKee: The analysis of product integration methods for Abel’s equation using discrete fractional differentiation. IMA Journal of Numerical Analysis 5 (1985), 339–353.

    Article  Google Scholar 

  6. P.P.B. Eggermont: A new analysis of the Euler-, midpoint-and trapezoidal-discretization methods for the numerical solution of Abel-type integral equations. Medical Image Processing Group Technical Report No. MIPG34 September 1979. State University of New York at Buffalo, Department of Computer Science.

    Google Scholar 

  7. P.P.B. Eggermont: A new analysis of the trapezoidal-discretization method for the numerical solution of Abel-type integral equations. Journal of Integral Equations 3 (1981), 317–332.

    Google Scholar 

  8. P. Erdös, W. Feller, and H. Pollard: A property of power series with positive coefficients. Bulletin of the American Mathematical Society 55 (1949), 201–204.

    Article  Google Scholar 

  9. R.L. Fullman: Measurement of particle sizes in opaque bodies. Journal of Metals 5 (1953), 447–452.

    Google Scholar 

  10. P.L. Goldsmith: The calculation of true particle size distributions from the sizes observed in a thin slice. British Journal of Applied Physics 18 (1967), 813–830.

    Article  Google Scholar 

  11. R. Gorenflo: How to compute very rough solutions of Abel integral equations? International Series of Numerical Mathematics 73 (1985), 281–282.

    Google Scholar 

  12. R. Gorenflo: Abel integral equations: applications-motivated solution concepts. To appear in Methoden und Verfahren der Mathematischen Physik.

    Google Scholar 

  13. W.C. Krumbein: Thin section mechanical analysis of inducted sediments. Journal of Geology 43 (1935), 482–496.

    Article  Google Scholar 

  14. W.P. Reid: Distribution of sizes of spheres in a solid from a study of slices of the solid. Journal of Mathematics and Physics 34 (1955), 95–102.

    Google Scholar 

  15. E. Scheil: Die Berechnung der Anzahl und Größenverteilung kugelförmiger Kristalle in undurchsichtigen Körpern mit Hilfe der durch einen ebenen Schnitt erhaltenen Schnittkreise. Zeitschrift für anorganische und allgemeine Chemie 201 (1931), 259–264.

    Article  Google Scholar 

  16. S.D. Wickseil: The corpuscle problem. A mathematical study of a biometric problem. Biometrika 17 (1925), 84–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Gorenflo, R. (1986). Approximation of Discrete Probability Distributions in Spherical Stereology. In: Cannon, J.R., Hornung, U. (eds) Inverse Problems. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 77. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7014-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7014-6_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7016-0

  • Online ISBN: 978-3-0348-7014-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics