Skip to main content

Abstract

In his recent article [5], P. Gruber has surveyed the development of the Geometry of Numbers since the publication of the books of Cassels [3] and Lekkerkerker [6]. As none of these sources deals specifically with lattices other than those of Minkowski-type (i.e. a ℤ-module with N generators in ℝN) it seems worthwhile to trace the main developments there for lattices which have more algebraic structure. Even though these are often endowed with arithmetic properties as for example when ℝ and ℤ are replaced by some field k and a ring O of integral elements in k, we shall use the term ‘algebraic lattice’. A special case is the Leech lattice, which arose as a Z-module of rank 24 in ℝ24 and can now be interpreted in this way as an O-module of rank 12 in k12, where k is the Eisenstein field Q(ρ), ρ = exp(2πi/3). Such features of an algebraic lattice have in recent years been harnessed to deal with problems in other areas, e.g. Finite groups, Sphere packings and Codes. As we intend to keep mainly to the ideas and spirit of the Geometry of Numbers, the section devoted to these special algebraic lattices is brief and supplied only with a selection of general references. With this view, it is however appropriate to include details of the case when k is a field endowed with a non-archimedean valuation and, in particular, to survey the work of Armitage [1], [2] on the Riemann-Roch theorem. Although a number of other generalizations appear in the literature (e.g. Dubois [4]), we shall confine our attention to one sufficiently general to include most of these and which permits the study of non-commutative lattices. As a Minkowski lattice may be interpreted as a discrete subgroup Г of the additive group G of ℝN with the property that the factor group G/Г has compact closure, it is natural to review the impact of the ideas of the Geometry of Numbers on discrete subgroups of topological groups and of Lie groups. But, overall, the recurrent themes are the fundamental theorems of Minkowski ([7], [5]) (§3.1) for convex bodies and the compactness theorem of Mahler ([5], Section 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Section 1

  1. Armitage, J.V. ‘Algebraic Function and an Analogue of the Geometry of Numbers: The Riemann-Roch Theorem’, Arch. der Math., XVIII (1967), 383–393.

    Google Scholar 

  2. Armitage, J.V. ‘The Product of N linear forms in a Field of Series and the Riemann Hypothesis for Curves’ (Univ. de Bordeaux, 1969 ), 17–27; Paris Soc. Math. France, 1971.

    Google Scholar 

  3. Cassels, J.W.S. ‘An Introduction to the Geometry of Numbers’ (Grundl. Math. Wiss., 99, Berlin, Springer 1959 ).

    Book  Google Scholar 

  4. Dubois, E. ‘Théorèmes de Transfert en Geometrie des Nombres sur un Anneau d’Adeles de Q’, C.R. Acad. Sci. Paris, Ser. A-B 283 (1976), A803 - A806.

    Google Scholar 

  5. Gruber, P.M. ‘The Geometry of Numbers-, Proc. Geometry Symposium (Siegen, 1978), Birkhäuser, Basle, 1979 186–225.

    Google Scholar 

  6. Lekkerkerker, G.C. ‘Geometry of Numbers’, Bibl. Math., 8 ( Groningen, Wolters-Noordhoff et Amsterdam: North Holland, 1969 ).

    Google Scholar 

  7. Minowski, H. Gesammelte Abhandlungen, I, II Teubner, Leipzig, Berlin, 1911.

    Google Scholar 

Section 2

  1. Cassels, J.W.S. ‘Bounds for the Least Solution of Homogeneous Quadratic Equations’, Proc. Cambridge Phil. Soc., 51 (1955), 262–264; 52 (1956), 604 (cf. H. Davenport, ibid, 53 (1957), 539–540 ).

    Google Scholar 

  2. Chalk, J.H.H. ‘Linearly Independent Zeros of a Quadratic Form over Number-fields’, Monatsh. Math., 90 (1980), 13–25.

    Article  Google Scholar 

  3. Chalk, J.H.H. ‘Algebraic Lattices’, C.R. Math. Rep. Acad. Sci. Canada, II (1980), No. 1, 5–10.

    Google Scholar 

  4. Conway, J.H. ‘Three Lectures on Exceptional Groups’, Proc. Conference Lond. Math. Soc., (Finite Simple Groups, Ch. VII, 215–224) (Acad. Press, 1971); (see also Inventiones Math., 7 (1969) 117–142 ).

    Google Scholar 

  5. Coxeter, H.S.M. ‘Regular Complex Polytopes’ ( Cambridge Univ. Press, 1974 ).

    Google Scholar 

  6. Davenport, H. ‘Homogeneous Quadratic Forms’, Mathematika, 18 (1971), 1–4.

    Article  Google Scholar 

  7. Feit, W. ‘Some Lattices over Q(√ − 3)’, J. Algebra, 52 (1978), 248–263.

    Article  Google Scholar 

  8. Feit, W. ‘On Integral Representations of Finite Groups’, Proc. London Math. Soc. (3), 29 (1974), 633–683.

    Article  Google Scholar 

  9. Leech, J. ‘Some Sphere Packing in higher space’, Canad. J. of Math., 16 (1964), 657–682 (see [1] for further references).

    Google Scholar 

  10. Leech J. and N.J.A. Sloane, ‘Sphere Packing and Error-correcting Codes’, Canad. J. of Math., 23 (1971), 718–745.

    Article  Google Scholar 

  11. Linsey, J.H. ‘A Correlation between PSU4(3), the Suzuki group and the Conway group’, Trans. Amer. Math. Soc., 157 (1971), 189–204.

    Article  Google Scholar 

  12. Mahler, K. ‘On Lattice points in n-dimensional Star-bodies I, Existence Theorems’, Proc. Roy. Soc. London A, 187 (1946), 151–187; Proc. Kon. Ned. Akad. Wet. (1946), 331–343, 444–454, 524–532, 622–631.

    Google Scholar 

  13. Minkowski, H. Diophantische Approximationen’, (Leipzig, 1907 ), Ch. 6.

    Google Scholar 

  14. Raghavan, S. ‘Bounds for Minimal Solutions of Diophantive Equations’, Nachr. Akad. Wiss., Gottingen, Math. Phys. KI, 9 (1975), 109–114.

    Google Scholar 

  15. Rogers, K. ‘Complex Homogeneous Linear Forms’, Proc. Camb. Phil. Soc., 52 (1955), 35–38.

    Article  Google Scholar 

  16. Rogers, K., and H.P.F. Swinnerton-Dyer, The Geometry of Numbers over Algebraic Number-fields’, Trans. Amer. Math. Soc., 88 (1958), 227–242.

    Article  Google Scholar 

  17. Sloane, N.J.A. ‘Codes over GF(4) and Complex Lattices’, J. Algebra, 52 (1978), 168–181.

    Article  Google Scholar 

  18. Steinitz, E. ‘Rechteckige Systeme und Moduli in Algebraischen Zahlenkorper’, Math. Annalen, 71 (1912), 328–354.

    Article  Google Scholar 

  19. Tits, J. ‘Quaternions over Q(,/ — 3), Leech’s lattice and the Sporadic group of Hall-Janko’, J. Algebra, 63 (1980), 56–75.

    Article  Google Scholar 

  20. Weyl, H. ‘Theory of Reduction for Arithmetic Equivalence’, Trans. Amer. Math. Soc., 48 (1940), 126–164; 51 (1942), 203–231.

    Google Scholar 

Section 3

  1. Armitage, J.V. ‘Algebraic Functions and an Analogue of the Geometry of Numbers: The Riemann-Roch theorem’, Arch. Math., XVIII (1967), 383–393.

    Google Scholar 

  2. Mahler, K. ‘An Analogue to Minkowski’s Geometry of Numbers in a Field of Series’, Ann. of Math., II, 42 (1941), 481–522.

    Google Scholar 

Section 4

  1. Borel, A. ‘Introduction aux Groupes Arithmétiques’, ( Hermann, Paris, 1969 ).

    Google Scholar 

  2. Borel A., and Harish-Chandra, ‘Arithmetic Subgroups of Algebraic Groups’, Annals of Math., 75 (1962), 485–535.

    Article  Google Scholar 

  3. Chabauty, C. ‘Limite d’ensembles et Géomètrie des Nombres’, Bull. Soc. Math. France, 78 (1950), 143–151.

    Google Scholar 

  4. Gel’fand, I.M., M.I. Graev, I.I. Pjateckii-gapiro, ‘Representation Theory and Automorphic Functions’, (Saunders, 1969, Ch. 2).

    Google Scholar 

  5. Macbeath, A.M. ‘Fuchsian Groups’ (Lecture Notes, Queen’s College, Dundee, 1961 ).

    Google Scholar 

  6. Macbeath, A.M., and S. Swierczkowski, ‘Limits of Lattices in a Compactly Generated Group’, Canad. J. of Math., 12 (1960), 427–437.

    Article  Google Scholar 

  7. Margulis, G.A. ‘On the Arithmeticity of Discrete Subgroups’, Soviet Math. Dokl., 10 (1969), 900–902.

    Google Scholar 

  8. Margulis, G.A. ‘Arithmeticity of Non-uniform Lattices’, Funkcional Anal. i Prilozen., 7 (3), (1973), 88–89.

    Google Scholar 

  9. Mostow, G.D. ‘Arithmetic Subgroups of Groups with Radical’, Annals of Math., 93 (1971), 409–438.

    Article  Google Scholar 

  10. O1er. N. ‘The Connectness of Fundamental Sets’, J. London Math. Soc., 43, (1968), 111–114.

    Google Scholar 

  11. Pontrigin, L.S. ‘Topological Groups’, (Gordon and Breach N.Y., 1966), Ch. 3, Sections 22–24.

    Google Scholar 

  12. Raghunathan, M.S. ‘Discrete Subgroups of Lie Groups’, ( Springer, Berlin, 1972 ).

    Book  Google Scholar 

  13. Shimura, G. ‘Introduction to the Arithmetic Theory of Automorphic Functions’, (Princeton Univ. Press, 1971 ).

    Google Scholar 

  14. Siegel, C.L. ‘Discontinuous Groups’, Annals of Math. 44 (1943), 674–689.

    Article  Google Scholar 

  15. Siegel, C.L. ‘Some Remarks on Discontinuous Groups’, Annals of Math., 46 (1945), 708–718, (cf. Theorem 2).

    Google Scholar 

  16. Siegel, C.L. ‘Symplectic Geometry’, (Acad. Press, N.Y., 1964 ).

    Google Scholar 

  17. Springer, T.A. ‘Linear Algebraic Groups’, ( Birkhâuser, Basle, 1981 ).

    Google Scholar 

  18. Takeuchi, K. ‘A characterisation of Arithmetic Fuchsian groups’, J. Math. Soc. Japan, No. 4, 27 (1975), 600–612.

    Google Scholar 

  19. Tsuji, M. ‘Theorems in the Geometry of Numbers for Fuschian Groups’, J. Math. Soc. Japan, 4 (1952), 189–193.

    Article  Google Scholar 

  20. Vigneras, M.-F. ‘Quaternions’, No. 800, Lecture Notes in Mathematics, (Springer, Berlin 1980 ).

    Google Scholar 

  21. Weil, A. ‘On Discrete Subgroups of Lie Groups’, Annals of Math., 72 (1960), 364–384

    Google Scholar 

  22. Weil, A. ‘On Discrete Subgroups of Lie Groups’, Annals of Math., II, 75 (1962), 578–602.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Basel AG

About this chapter

Cite this chapter

Chalk, J.H.H. (1983). Algebraic Lattices. In: Gruber, P.M., Wills, J.M. (eds) Convexity and Its Applications. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5858-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5858-8_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5860-1

  • Online ISBN: 978-3-0348-5858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics