Skip to main content

Sampling Theory and Reproducing Kernel Hilbert Spaces

  • Reference work entry
  • First Online:
Operator Theory

Abstract

This work intends to serve as an introduction to sampling theory. Basically, sampling theory deals with the reconstruction of functions through their values on an appropriate sequence of points by means of sampling expansions involving these values. Reproducing kernel Hilbert spaces are suitable spaces for sampling purposes since evaluation functionals are continuous. As a consequence, the recovery of any function from a sequence of its samples depends on the basis properties of the reproducing kernel at the sampling points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldroubi, A.: Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces. Appl. Comput. Harmon. Anal. 13, 151–161 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldroubi, A., Gröchenig, K.: Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldroubi, A., Sun, Q., Tang, W.-S.: Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl. 11(2), 215–244 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benedetto, J.J.: Irregular frames and sampling. In: Chui, C.K. (ed.) Wavelets-A Tutorial in Theory and Applications, pp. 445–507. Academic, San Diego (1992)

    Google Scholar 

  5. Butzer, P.L.: A survey of Whittaker–Shannon sampling theorem and some of its extensions. J. Math. Res. Expo. 3, 185–212 (1983)

    MathSciNet  Google Scholar 

  6. Butzer, P.L., Stens, R.L.: Sampling theory for not necessarily band-limited functions: a historical overview. SIAM Rev. 34, 40–53 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cauchy, A.L.: Mémoire sur diverses formules d’analyse. Comptes Rendues Acad. Sci. Paris 12, 283–298 (1841)

    Google Scholar 

  8. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  9. Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feichtinger, H.G., Gröchenig, K.: Theory and practice of irregular sampling (Ch. 8). In: Benedetto, Frazier (eds.) Wavelets: Mathematics and Applications. CRC Press, Boca Raton (1994)

    Google Scholar 

  11. Fernández-Morales, H.R., García, A.G., Pérez-Villalón, G.: Generalized sampling in \(L^{2}(\mathbb{R}^{d})\) shift-invariant subspaces with multiple stable generators. In: Xhen, X., Zayed, A. (eds.) Multiscale Signal Analysis and Modeling. Lecture Notes in Electrical Engineering, pp. 51–80. Springer, New York (2012)

    Google Scholar 

  12. García, A.G.: Orthogonal sampling formulas: a unified approach. SIAM Rev. 42, 499–512 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. García, A.G.: A brief walk through Sampling Theory. Adv. Imaging Electron Phys. 124, 63–137 (2002)

    Article  Google Scholar 

  14. García, A.G., Pérez-Villalón, G.: Dual frames in L 2(0, 1) connected with generalized sampling in shift-invariant spaces. Appl. Comput. Harmon. Anal. 20, 422–433 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. García, A.G., Hernández-Medina, M.A., Szafraniec, F.H.: Analytic Kramer kernels, Lagrange-type interpolation series and de Branges spaces. Complex Var. Elliptic Equ. 58(1), 79–97 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. García, A.G., Hernández-Medina, M.A., Muñoz-Bouzo, M.J.: The Kramer sampling theorem revisited. Acta Appl. Math. 133(1), 87–111 (2014). doi:10.1007/s10440-013-9860-1

    Article  MATH  MathSciNet  Google Scholar 

  17. Hamming, R.W.: Numerical Methods for Scientists and Engineers. Dover, New York (1973)

    MATH  Google Scholar 

  18. Hardy, G.H.: Notes on special systems of orthogonal functions, IV: the Whittaker’s cardinal series. Proc. Camb. Philos. Soc. 37, 331–348 (1941)

    Article  Google Scholar 

  19. Higgins, J.R.: Five short stories about cardinal series. Bull. Am. Math. Soc. 12, 45–89 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  21. Higgins, J.R.: Derivative sampling–a paradigm example of multichannel methods (Ch. 3). In: Higgins, J.R., Stens, R.L. (eds.) Sampling Theory in Fourier and Signal Analysis: Advanced Topics. Oxford University Press, Oxford (1999)

    Google Scholar 

  22. Jerri, A.: The Shannon sampling theorem and its various extensions and applications: a tutorial review. Proc. IEEE 68(11), 1565–1596 (1977)

    Article  Google Scholar 

  23. Kang, S., Kwon, K.H.: Generalized average sampling in shift-invariant spaces. J. Math. Anal. Appl. 377, 70–78 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Levinson, N.: Gap and Density Theorems, vol. 26. AMS Colloquium Publications, New York (1940)

    Google Scholar 

  25. Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of \(L^{p}(\mathbb{R}^{d})\). J. Funct. Anal. 258, 2422–2452 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nashed, M.Z., Sun, Q.: Function spaces for sampling expansions. In: Xhen, X., Zayed, A. (eds.) Multiscale Signal Analysis and Modeling. Lecture Notes in Electrical Engineering, pp. 81–104. Springer, New York (2012)

    Google Scholar 

  27. Nashed, M.Z., Walter, G.G.: General sampling theorems in reproducing kernel Hilbert spaces. Math. Control Signals Syst. 4, 373–412 (1991)

    Article  MathSciNet  Google Scholar 

  28. Partington, J.R.: Interpolation, Identification and Sampling. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  29. Parzen, E.: Statistical inference on time series by RKHS methods. In: Proceedings of 12th Biennial Seminar of the Canadian Mathematical Congress. Canadian Mathematical Congress, Montreal (1970)

    Google Scholar 

  30. Saitoh, S.: Integral Transforms, Reproducing Kernels and Their Applications. Pitman Research Notes in Mathematics Series, vol. 369. Longman, Harlow (1997)

    Google Scholar 

  31. Sansone, G.: Orthogonal Functions. Dover, New York (1991)

    Google Scholar 

  32. Seip, K.: Interpolation and Sampling in Spaces of Analytic Functions. AMS University Lectures Series, vol. 33. American Mathematical Society, Providence (2004)

    Google Scholar 

  33. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 137, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  34. Sun, W., Zhou, X.: Average sampling in shift-invariant subspaces with symmetric averaging functions. J. Math. Anal. Appl. 287, 279–295 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Szegö, G.: Orthogonal Polynomials, vol. 23. AMS Colloquium Publications, Providence (1991)

    Google Scholar 

  36. Unser, M.: Sampling 50 Years After Shannon. Proc. IEEE 88(4), 569–587 (2000)

    Article  Google Scholar 

  37. Walter, G.G.: A sampling theorem for wavelet subspaces. IEEE Trans. Inf. Theory 38, 881–884 (1992)

    Article  MATH  Google Scholar 

  38. Yao, K.: Applications of reproducing kernel Hilbert spaces–bandlimited signal models. Inf. Control 11, 429–444 (1967)

    Article  MATH  Google Scholar 

  39. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic, New York (2001)

    MATH  Google Scholar 

  40. Zayed, A.I.: Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton (1993)

    MATH  Google Scholar 

  41. Zhang, H., Zhang, J.: Frames, Riesz bases, and sampling expansions in Banach spaces via semi-inner products. Appl. Comput. Harmon. Anal. 31, 1–25 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhou, X., Sun, W.: On the sampling theorem for wavelet subspaces. J. Fourier Anal. Appl. 5(4), 347–354 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio G. García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this entry

Cite this entry

García, A.G. (2015). Sampling Theory and Reproducing Kernel Hilbert Spaces. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0667-1_64

Download citation

Publish with us

Policies and ethics