Skip to main content

Generalized Sensitivity Analysis for Delay Differential Equations

  • Chapter
  • First Online:
Control and Optimization with PDE Constraints

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 164))

Abstract

We present theoretical foundations for traditional sensitivity and generalized sensitivity functions for a general class of nonlinear delay differential equations. Included are theoretical results for sensitivity with respect to the delays. A brief summary of previous results along with several illustrative computational examples are also given.

This research was supported in part by Grant Number NIAID R01AI071915-09 from the National Institute of Allergy and Infectious Disease, in part by the US Air Force Office of Scientific Research under grant number FA9550-09-1-0226 and in part by the National Institute on Alcohol Abuse and Alcoholism under a subcontract from the Research Foundation for Mental Hygiene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Arino, L. Wang, G. Wolkowicz, An alternative formulation for a delayed logistic equation. J. Theor. Biol. 241, 109–118 (2006)

    MathSciNet  Google Scholar 

  2. C. Baker, F. Rihan, Sensitivity analysis of parameters in modelling with delay-differential equations, MCCM Tec. Rep., 349 (1999), Manchester, ISSN 1360-1725

    Google Scholar 

  3. H.T. Banks, Modeling and Control in the Biomedical Sciences. Lecture Notes in Biomath., vol. 6 (Springer, Berlin, 1975)

    MATH  Google Scholar 

  4. H.T. Banks, Delay systems in biological models: approximation techniques, in Nonlinear Systems and Applications, ed. by V. Lakshmikantham (Academic Press, New York, 1977), pp. 21–38

    Google Scholar 

  5. H.T. Banks, Approximation of nonlinear functional differential equation control systems. J. Optim. Theory Appl. 29, 383–408 (1979)

    MathSciNet  MATH  Google Scholar 

  6. H.T. Banks, Identification of nonlinear delay systems using spline methods, in Nonlinear Phenomena in Mathematical Sciences, ed. by V. Lakshmikantham (Academic Press, New York, 1982), pp. 47–55

    Google Scholar 

  7. H.T. Banks, Identification of nonlinear delay systems using spline methods, in Nonlinear Phenomena in Mathematical Sciences, ed. by V. Lakshmikanitham (Academic Press, New York, 1982), pp. 47–55

    Google Scholar 

  8. H.T. Banks, A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering, vol. 15 (Taylor & Francis, London, 2012, accepted January 15), 258 pp.

    Google Scholar 

  9. H.T. Banks, D.M. Bortz, A parameter sensitivity methodology in the context of HIV delay equation models. J. Math. Biol. 50(6), 607–625 (2005)

    MathSciNet  MATH  Google Scholar 

  10. H.T. Banks, J.A. Burns, An abstract framework for approximate solutions to optimal control problems governed by hereditary systems, in International Conference on Differential Equations, ed. by H. Antosiewicz (Academic Press, San Diego, 1975), pp. 10–25

    Google Scholar 

  11. H.T. Banks, J.A. Burns, Hereditary control problems: numerical methods based on averaging approximations. SIAM J. Control Optim. 16, 169–208 (1978)

    MathSciNet  MATH  Google Scholar 

  12. H.T. Banks, F. Kappel, Spline approximations for functional differential equations. J. Differ. Equ. 34, 496–522 (1979)

    MathSciNet  MATH  Google Scholar 

  13. H.T. Banks, K. Kunisch, Estimation Techniques for Distributed Parameter Systems (Birkhauser, Boston, 1989)

    MATH  Google Scholar 

  14. H.T. Banks, P.K. Daniel Lamm, Estimation of delays and other parameters in nonlinear functional differential equations. SIAM J. Control Optim. 21, 895–915 (1983)

    MathSciNet  MATH  Google Scholar 

  15. H.T. Banks, J.M. Mahaffy, Global asymptotic stability of certain models for protein synthesis and repression. Q. Appl. Math. 36, 209–221 (1978)

    MathSciNet  MATH  Google Scholar 

  16. H.T. Banks, J.M. Mahaffy, Stability of cyclic gene models for systems involving repression. J. Theor. Biol. 74, 323–334 (1978)

    MathSciNet  Google Scholar 

  17. H.T. Banks, H. Nguyen, Sensitivity of dynamical systems to Banach space parameters. J. Math. Anal. Appl. 323, 146–161 (2006). CRSC-TR05-13, February, 2005

    MathSciNet  MATH  Google Scholar 

  18. H.T. Banks, I.G. Rosen, Spline approximations for linear nonautonomous delay systems. J. Math. Anal. Appl. 96, 226–268 (1983). ICASE Rep. No. 81-33, NASA Langley Res. Center, Oct., 1981

    MathSciNet  MATH  Google Scholar 

  19. H.T. Banks, J.A. Burns, E.M. Cliff, Parameter estimation and identification for systems with delays. SIAM J. Control Optim. 19, 791–828 (1981)

    MathSciNet  MATH  Google Scholar 

  20. H.T. Banks, S. Dediu, S.L. Ernstberger, Sensitivity functions and their uses in inverse problems. J. Inverse Ill-Posed Probl. 15, 683–708 (2007). CRSC-TR07-12, July, 2007

    MathSciNet  MATH  Google Scholar 

  21. H.T. Banks, S. Dediu, H.K. Nguyen, Time delay systems with distribution dependent dynamics. Annu. Rev. Control 31, 17–26 (2007). CRSC-TR06-15, May, 2006

    Google Scholar 

  22. H.T. Banks, S. Dediu, H.K. Nguyen, Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Math. Biosci. Eng. 4, 403–430 (2007). CRSC-TR06-25, November, 2006

    MathSciNet  MATH  Google Scholar 

  23. H.T. Banks, M. Davidian, J.R. Samuels Jr., K.L. Sutton, An inverse problem statistical methodology summary, in Mathematical and Statistical Estimation Approaches in Epidemiology, ed. by G. Chowell et al. (Springer, Berlin, 2009), pp. 249–302. CRSC-TR08-01, January, 2008, Chap. 11

    MATH  Google Scholar 

  24. H.T. Banks, J.E. Banks, S.L. Joyner, Estimation in time-delay modeling of insecticide-induced mortality. J. Inverse Ill-Posed Probl. 17, 101–125 (2009). CRSC-TR08-15, October, 2008

    MathSciNet  MATH  Google Scholar 

  25. H.T. Banks, S. Dediu, S. Ernstberger, F. Kappel, Generalized sensitivities and optimal experimental design. J. Inverse Ill-Posed Probl. 18, 25–83 (2010). CRSC-TR08-12, revised, November, 2009

    MathSciNet  MATH  Google Scholar 

  26. H.T. Banks, K. Rehm, K. Sutton, Inverse problems for nonlinear delay systems. Methods Appl. Anal. 17, 331–356 (2010). CRSC-TR10-17, N.C. State University, November, 2010

    MathSciNet  MATH  Google Scholar 

  27. H.T. Banks, K. Holm, F. Kappel, Comparison of optimal design methods in inverse problems. Inverse Probl. 27, 075002 (2011). CRSC-TR10-11, July, 2010, pp. 31

    MathSciNet  MATH  Google Scholar 

  28. H.T. Banks, D. Robbins, K. Sutton, Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations. Math. Biosci. Eng. CRSC-TR12-14, May, 2012 (to appear)

    Google Scholar 

  29. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces (Noordhoff, Leyden, 1976)

    MATH  Google Scholar 

  30. R. Bellman, K.L. Cooke, Differential-Difference Equations. Mathematics in Science and Engineering, vol. 6 (Academic Press, New York, 1963)

    MATH  Google Scholar 

  31. D. Brewer, The differentiability with respect to a parameter of the solution of a linear abstract Cauchy problem. SIAM J. Math. Anal. 13, 607–620 (1982)

    MathSciNet  MATH  Google Scholar 

  32. D. Brewer, J.A. Burns, E.M. Cliff, Parameter identification for an abstract Cauchy problem by quasilinearization. ICASE Rep. No. 89-75, NASA Langley Res. Center, Oct. 1989

    Google Scholar 

  33. J.A. Burns, E.M. Cliff, S.E. Doughty, Sensitivity analysis and parameter estimation for a model of Chlamydia Trachomatis infection. J. Inverse Ill-Posed Probl. 15, 19–32 (2007)

    MathSciNet  MATH  Google Scholar 

  34. S.N. Busenberg, K.L. Cooke (eds.), Differential Equations and Applications in Ecology, Epidemics, and Population Problems (Academic Press, New York, 1981)

    MATH  Google Scholar 

  35. V. Capasso, E. Grosso, S.L. Paveri-Fontana (eds.), Mathematics in Biology and Medicine. Lecture Notes in Biomath., vol. 57 (Springer, Berlin, 1985)

    Google Scholar 

  36. J. Caperon, Time lag in population growth response of Isochrysis Galbana to a variable nitrate environment. Ecology 50, 188–192 (1969)

    Google Scholar 

  37. S. Choi, N. Koo, Oscillation theory for delay and neutral differential equations. Trends Math. 2, 170–176 (1999)

    Google Scholar 

  38. K.L. Cooke, Functional differential equations: Some models and perturbation problems, in Differential Equations and Dynamical Systems, ed. by J.K. Hale, J.P. LaSalle (Academic Press, New York, 1967), pp. 167–183

    Google Scholar 

  39. J.M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics. Lec. Notes in Biomath., vol. 20 (Springer, Berlin, 1977)

    MATH  Google Scholar 

  40. U. Forys, A. Marciniak-Czochra, Delay logistic equation with diffusion, in Proc. 8th Nat. Conf. Mathematics Applied to Biology and Medicine, Lajs, Warsaw, Poland (2002), pp. 37–42

    Google Scholar 

  41. U. Forys, A. Marciniak-Czochra, Logistic equations in tumor growth modelling. Int. J. Appl. Math. Comput. Sci. 13, 317–325 (2003)

    MathSciNet  MATH  Google Scholar 

  42. J.S. Gibson, L.G. Clark, Sensitivity analysis for a class of evolution equations. J. Math. Anal. Appl. 58, 22–31 (1977)

    MathSciNet  MATH  Google Scholar 

  43. L. Glass, M.C. Mackey, Pathological conditions resulting from instabilities in physiological control systems. Ann. N.Y. Acad. Sci. 316, 214–235 (1979)

    MATH  Google Scholar 

  44. K.P. Hadeler, Delay equations in biology, in Functional Differential Equations and Approximation of Fixed Points, vol. 730 (Springer, Berlin, 1978), pp. 136–156

    Google Scholar 

  45. J.K. Hale, Theory of Functional Differential Equations (Springer, New York, 1977)

    MATH  Google Scholar 

  46. F.C. Hoppensteadt (ed.), Mathematical Aspects of Physiology. Lectures in Applied Math, vol. 19 (Am. Math. Soc., Providence, 1981)

    MATH  Google Scholar 

  47. G.E. Hutchinson, Circular causal systems in ecology. Ann. N.Y. Acad. Sci. 50, 221–246 (1948)

    Google Scholar 

  48. G.E. Hutchinson, An Introduction to Population Ecology (Yale University Press, New Haven, 1978)

    MATH  Google Scholar 

  49. F. Kappel, An approximation scheme for delay equations, in Nonlinear Phenomena in Mathematical Sciences, ed. by V. Lakshmikantham (Academic Press, New York, NY, 1982), pp. 585–595

    Google Scholar 

  50. F. Kappel, Generalized sensitivity analysis in a delay system. Proc. Appl. Math. Mech. 7, 1061001–1061002 (2007)

    Google Scholar 

  51. F. Kappel, W. Schappacher, Autonomous nonlinear functional differential equations and averaging approximations. Nonlinear Anal. 2, 391–422 (1978)

    MathSciNet  MATH  Google Scholar 

  52. Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics (Academic Press, San Diego, 1993)

    MATH  Google Scholar 

  53. N. MacDonald, Time lag in a model of a biochemical reaction sequence with end-product inhibition. J. Theor. Biol. 67, 727–734 (1977)

    MathSciNet  Google Scholar 

  54. M. Martelli, K.L. Cooke, E. Cumberbatch, B. Tang, H. Thieme (eds.), Differential Equations and Applications to Biology and to Industry (World Scientific, Singapore, 1996)

    Google Scholar 

  55. J.A.J. Metz, O. Diekmann (eds.), The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomath., vol. 68 (Springer, Berlin, 1986)

    MATH  Google Scholar 

  56. N. Minorsky, Self-excited oscillations in dynamical systems possessing retarded actions. J. Appl. Mech. 9, A65–A71 (1942)

    Google Scholar 

  57. N. Minorsky, On non-linear phenomenon of self-rolling. Proc. Natl. Acad. Sci. 31, 346–349 (1945)

    MathSciNet  MATH  Google Scholar 

  58. N. Minorsky, Nonlinear Oscillations (Van Nostrand, New York, 1962)

    MATH  Google Scholar 

  59. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer, New York, 1983)

    MATH  Google Scholar 

  60. D. Robbins, Sensitivity Functions for Delay Differential Equation Models. Ph.D. Dissertation, North Carolina State University, Raleigh, September, 2011

    Google Scholar 

  61. K. Schmitt (ed.), Delay and Functional Differential Equations and Their Applications (Academic Press, New York, 1972)

    Google Scholar 

  62. R. Schuster, H. Schuster, Reconstruction models for the Ehrlich Ascites Tumor of the mouse, in Mathematical Population Dynamics, vol. 2, ed. by O. Arino, D. Axelrod, M. Kimmel, Wuertz, Winnipeg (1995), pp. 335–348

    MATH  Google Scholar 

  63. M.H. Schultz, Spline Analysis (Prentice Hall, Englewood Cliffs, 1973)

    MATH  Google Scholar 

  64. M.H. Schultz, R.S. Varga, L-splines. Numer. Math. 10, 345–369 (1967)

    MathSciNet  MATH  Google Scholar 

  65. K. Thomseth, C. Cobelli, Generalized sensitivity functions in physiological system identification. Ann. Biomed. Eng. 27, 606–616 (1999)

    Google Scholar 

  66. E.M. Wright, A non-linear difference-differential equation. J. Reine Angew. Math. 494, 66–87 (1955)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Banks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Banks, H.T., Robbins, D., Sutton, K.L. (2013). Generalized Sensitivity Analysis for Delay Differential Equations. In: Bredies, K., Clason, C., Kunisch, K., von Winckel, G. (eds) Control and Optimization with PDE Constraints. International Series of Numerical Mathematics, vol 164. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0631-2_2

Download citation

Publish with us

Policies and ethics