Skip to main content

On Chaos Representation and Orthogonal Polynomials for the Doubly Stochastic Poisson Process

  • Conference paper
  • First Online:

Part of the book series: Progress in Probability ((PRPR,volume 67))

Abstract

In an L 2-framework, we study various aspects of stochastic calculus with respect to the centered doubly stochastic Poisson process. We introduce an orthogonal basis via multilinear forms of the value of the random measure and we analyze the chaos representation property. We review the structure of non-anticipating integration for martingale random fields and in this framework we study non-anticipating differentiation. We present integral representation theorems where the integrand is explicitly given by the non-anticipating derivative.

Stochastic derivatives of anticipative nature are also considered: The Malliavin type derivative is put in relationship with another anticipative derivative operator here introduced. This gives a new structural representation of the Malliavin derivative based on simple functions. Finally we exploit these results to provide a Clark–Ocone type formula for the computation of the nonanticipating derivative.

Mathematics Subject Classification (2010). 60H07, 60H05.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.E. Benth, G. Di Nunno, A. Løkka, B. Øksendal, and F. Proske, Explicit representation of the minimal variance portfolio in markets driven by Lévy processes. Mathematical Finance, 13 (1) (2003), 55–72.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Bielecki, M. Jeanblanc, and M. Rutkowski, Hedging of Defaultable Claims. Paris- Princeton Lectures on Mathematical Finance, 2004.

    Google Scholar 

  3. P. Billingsley, Probability and Measure. Wiley, 1995.

    Google Scholar 

  4. R. Boel, P. Varaiya, and E. Wong, Martingales on jump processes. I. Representation results. SIAM Journal on control, 13 (5) (1975), 999–1021.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Brémaud, Point Processes and Queues – Martingale Dynamics. Springer, 1981.

    Google Scholar 

  6. R. Cairoli and J. Walsh, Stochastic integrals in the plane. Acta Mathematica, 134 (1975), 111–183.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Carr, H. German, D. Madan, and M. Yor, Stochastic volatility for Lévy processes. Mathematical Finance, 13 (3) (2003), 345–282.

    Article  MathSciNet  MATH  Google Scholar 

  8. D.R. Cox, Some statistical methods connected with series of events. Journal of the Royal Statistical Society, Series B (Methodological), 17 (2) (1955), 129–164.

    Google Scholar 

  9. D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes I. Springer, 2003.

    Google Scholar 

  10. M.H.A. Davis, The representation of martingales of jump processes. SIAM Journal on Control and Optimization, 14 (4) (1976), 623–638.

    Article  MathSciNet  MATH  Google Scholar 

  11. M.H.A. Davis, Martingale representation and all that. In Advances in Control, Communication Networks, and Transportation Systems, E.H. Abed (editor), Systems & Control: Foundations & Applications, Birkhäuser Boston, 2005, 57–68.

    Google Scholar 

  12. G. Di Nunno, Stochastic integral representation, stochastic derivatives and minimal variance hedging. Stochastics and Stochastics Reports, 73 (2002), 181–198.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Di Nunno, Random fields evolution: non-anticipating integration and differentiation. Theory of Probability and Mathematical Statistics, AMS, 66 (2003), 91–104.

    Google Scholar 

  14. G. Di Nunno, On orthogonal polynomials and the Malliavin derivative for Lévy stochastic measures. SMF Séminaires et Congr`es, 16 (2007), 55–69.

    Google Scholar 

  15. G. Di Nunno, Random fields: non-anticipating derivative and differentiation formulas. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10 (2007), 465–481.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Di Nunno and I. Baadshaug Eide, Minimal-variance hedging in large financial markets: random fields approach. Stochastic Analysis and Applications, 28 (2010), 54–85.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Di Nunno and S. Sjursen, Backwards stochastic differential equations driven by the doubly stochastic Poisson process. Manuscript, 2012.

    Google Scholar 

  18. D. Duffie and K. Singleton, Credit Risk: Pricing, Measurement, and Management. Princetown University Press, 2003.

    Google Scholar 

  19. J. Grandell, Doubly Stochastic Poisson Processes. Lecture Notes in Mathematics, 529, Springer-Verlag, 1976.

    Google Scholar 

  20. J. Jacod, Multivariate point processes: predictable projection, Radon–Nikodym derivatives, representation of martingales. Probability Theory and Related Fields, 31 (3) (1975), 235–253.

    MATH  Google Scholar 

  21. O. Kallenberg, Random Measures. Berlin, Akademie-Verlag, 1986.

    Google Scholar 

  22. O. Kallenberg. Foundations of Modern Probability. Springer, 1997.

    Google Scholar 

  23. D. Lando, On Cox processes and credit risky securities. Review of Derivatives Research, 2 (1998), 99–120.

    MATH  Google Scholar 

  24. D. Nualart, The Malliavin Calculus and Related Topics. Springer, 1995.

    Google Scholar 

  25. B. Øksendal, Stochastic Differential Equations. Springer, 2005.

    Google Scholar 

  26. N. Privault, Generalized Bell polynomials and the combinatorics of Poisson central moments. The Electronic Journal of Combinatorics, 18 (1) (2011), 1–10.

    MathSciNet  Google Scholar 

  27. M. Winkel, The recovery problem for time-changed Lévy processes. Research Report MaPhySto 2001-37, October 2001.

    Google Scholar 

  28. E. Wong and M. Zakai, Martingales and stochastic integrals for processes with a multi-dimensional parameter. Probability Theory and Related Fields, 29 (1974), 109– 122.

    MathSciNet  MATH  Google Scholar 

  29. A.L. Yablonski, The Malliavin calculus for processes with conditionally independent increments. In Stochastic Analysis and Applications, The Abel Symposium 2005, 2, Berlin: Springer, 2007, 641–678.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Di Nunno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Nunno, G.D., Sjursen, S. (2013). On Chaos Representation and Orthogonal Polynomials for the Doubly Stochastic Poisson Process. In: Dalang, R., Dozzi, M., Russo, F. (eds) Seminar on Stochastic Analysis, Random Fields and Applications VII. Progress in Probability, vol 67. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0545-2_2

Download citation

Publish with us

Policies and ethics